Search results for: persistent organic pollutants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3302

Search results for: persistent organic pollutants

1502 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method

Authors: M. E. Velásquez Torres, F. Tzompantzi, J. C. Castillo-Rodríguez, A. G. Romero Villegas, S. Mendéz-Salazar, C. E. Santolalla-Vargas, J. Cardoso-Martínez

Abstract:

Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%.

Keywords: 4-chlorophenol, photocatalysis, water pollutant, sol-gel

Procedia PDF Downloads 102
1501 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 82
1500 Nutrition Bio-Shield Superfood: Healthy and Live Herbal Supplement for Immune System Enhancement

Authors: Azam Bayat, Aref Khalkhali, Ali Reza Mahjoub

Abstract:

Healthy and viable herbal supplement were prepared from wheat by a green route. This organic biomaterial was named Nutrition Bio-shield Superfood (NBS). The NBS supplement had various vitamins, macro and micro molecules, and ingredients. In this study, 20 small Balb/C labile specimens were used in a weighing 30 ± 5 range. The samples were randomly divided into different groups, then the groups were divided into 5 groups. According to the results of this study, the mean number of white blood cells and neutrophil percentage in the experimental group receiving healthy and live dietary supplement showed a significant increase at the 5% probability level in all three groups received 50, 100 and 150 mg/ kg body weight of the mouse compared to the control group. In general, the dietary supplement increases the level of immunity.

Keywords: healthy and live herbal supplement, biomaterial, immune system, enhancement

Procedia PDF Downloads 123
1499 Climate Change Impact on Whitefly (Bemisia tabaci) Population Infesting Tomato (Lycopersicon esculentus) in Sub-Himalayan India and Their Sustainable Management Using Biopesticides

Authors: Sunil Kumar Ghosh

Abstract:

Tomato (Lycopersicon esculentus L.) is an annual vegetable crop grown in the sub-Himalayan region of north east India throughout the year except rainy season in normal field cultivation. The crop is susceptible to various insect pests of which whitefly (Bemesia tabaci Genn.) causes heavy damage. Thus, a study on its occurrence and sustainable management is needed for successful cultivation. The pest was active throughout the growing period. During 38th standard week to 41st standard week that is during 3rd week of September to 2nd week of October minimum population was observed. The maximum population level was maintained during 11th standard week to 18th standard week that is during 2nd week of March to 3rd week of March with peak population (0.47/leaf) was recorded. Weekly population counts on white fly showed non-significant negative correlation (p=0.05) with temperature and weekly total rainfall where as significant negative correlation with relative humidity. Eight treatments were taken to study the management of the white fly pest such as botanical insecticide azadirachtin botanical extracts, Spilanthes paniculata flower, Polygonum hydropiper L. flower, tobacco leaf and garlic and mixed formulation like neem and floral extract of Spilanthes were evaluated and compared with the ability of acetamiprid. The insectide acetamiprid was found most lethal against whitefly providing 76.59% suppression, closely followed by extracts of neem + Spilanthes providing 62.39% suppression. Spectophotometric scanning of crude methanolic extract of Polygonum flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals like Spirilloxanthin, Quercentin diglycoside, Quercentin 3-O-rutinoside, Procyanidin B1 and Isorhamnetin 3-O-rutinoside. These chemicals are responsible for pest control. Spectophotometric scanning of crude methanolic extract of Spilanthes flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals of which polysulphide compounds are important and responsible of pest control. Neem and Spilanthes individually did not produce good results but when used as a mixture they recorded better results. Highest yield (30.15 t/ha) were recorded from acetamiprid treated plots followed by neem + Spilanthes (27.55 t/ha). Azadirachtin and Plant extracts are biopesticides having less or no hazardous effects on human health and environment. Thus they can be incorporated in IPM programmes and organic farming in vegetable cultivation.

Keywords: biopesticides, organic farming, seasonal fluctuation, vegetable IPM

Procedia PDF Downloads 292
1498 Effective Microorganisms as a Sustainable Environment Product and Their Application: A Study in Pakistan

Authors: Jaffar Hussain, Farman Ali Shah

Abstract:

As we know that Pakistan is the developing country so it adopts new technologies for progress. In last three decays, some new technologies were introduced in the world in which Effective Microorganism was one of them. Microorganisms are one of the most power full living forces on earth. Originally, EM was developed as an odor control, farm, and animal health, human health many industrial treatments. Effective Microorganism is an organic fertilizer that contains a mixture of co-existing valuable microorganism composed from the environment. There are vast application of the EM in the world in which the researchers are explained in literature .In Pakistan work on EM technologies are under process, researcher are doing work to make them most valuable. At that time the application of EM are in agriculture, water treatment, to increase Cement strength, improving saline soil etc. Effective microorganisms are environmentally friendly , not-naturally organized, not chemically synthesized, not dangerous and not pathogenic.

Keywords: developing country, technologies, effective microorganism, researchers, Pakistan, agriculture

Procedia PDF Downloads 465
1497 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause

Authors: Kana Matsuyanagi

Abstract:

Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.

Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI

Procedia PDF Downloads 18
1496 Biostratigraphic Significance of Shaanxilithes ningqiangensis from the Tal Group (Cambrian), Nigalidhar Syncline, Lesser Himalaya, India and Its GC-MS Analysis

Authors: C. A. Sharma, Birendra P. Singh

Abstract:

We recovered 40 well preserved ribbon-shaped, meandering specimens of S. ningqiangensis from the Earthy Dolomite Member (Krol Group) and calcareous siltstone beds of the Earthy Siltstone Member (Tal Group) showing closely spaced annulations that lacked branching. The beginning and terminal points are indistinguishable. In certain cases, individual specimens are characterized by irregular, low-angle to high-angle sinuosity. It has been variously described as body fossil, ichnofossil and algae. Detailed study of this enigmatic fossil is needed to resolve the long standing controversy regarding its phylogenetic and stratigraphic placements, which will be an important contribution to the evolutionary history of metazoans. S. ningqiangensis has been known from the late Neoproterozoic (Ediacaran) of southern and central China (Sichuan, Shaanxi, Quinghai and Guizhou provinces and Ningxia Hui Autonomous region), Siberian platform and across Pc/C Boundary from latest Neoprterozoic to earliest Cambrian of northern India. Shaanxilithes is considered an Ediacaran organism that spans the Precambrian–Cambrian boundary, an interval marked by significant taphonomic and ecological transformations that include not only innovation but also probable extinction. All the past well constrained finds of S. ningqiangensis are restricted to Ediacaran age. However, due to the new recoveries of the fossil from Nigalidhar Syncline, the stratigraphic status of S. ningqiangensis-bearing Earthy Siltstone Member of the Shaliyan Formation of the Tal Group (Cambrian) is rendered uncertain, though the overlying Chert Member in the adjoining Korgai Syncline has yielded definite early Cambrian acritarchs. The moot question is whether the Earthy Siltstone Member represents an Ediacaran or an early Cambrian age?. It would be interesting to find if Shaanxilithes, so far known from Ediacaran sequences, could it transgress to the early Cambrian or in simple words could it withstand the Pc/C Boundary event? GC-MS data shows the S. ningqiangensis structure is formed by hydrocarbon organic compounds which are filled with inorganic elements filler like silica, Calcium, phosphorus etc. The S. ningqiangensis structure is a mixture of organic compounds of high molecular weight, containing several saturated rings with hydrocarbon chains having an occasional isolated carbon-carbon double bond and also containing, in addition, to small amounts of nitrogen, sulfur and oxygen. Data also revealed that the presence of nitrogen which would be either in the form of peptide chains means amide/amine or chemical form i.e. nitrates/nitrites etc. The formula weight and the weight ratio of C/H shows that it would be expected for algae derived organics, since algae produce fatty acids as well as other hydrocarbons such as cartenoids.

Keywords: GC-MS Analysis, lesser himalaya, Pc/C Boundary, shaanxilithes

Procedia PDF Downloads 236
1495 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 230
1494 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: flow, aeration, bioreactor, oxygen concentration

Procedia PDF Downloads 368
1493 Evaluating Cyanide Biodegradation by Bacteria Isolated from Gold Mine Effluents in Bulawayo, Zimbabwe

Authors: Ngonidzashe Mangoma, Caroline Marigold Sebata

Abstract:

The release of cyanide-rich effluents from gold mines, and other industries, into the environment, is a global concern considering the well-known metabolic effects of cyanide in all forms of life. Such effluents need to be treated to remove cyanide, among other pollutants, before their disposal. This study aimed at investigating the possible use of bacteria in the biological removal of cyanide from cyanide-rich effluents. Firstly, cyanide-degrading bacteria were isolated from gold mine effluents and characterised. The isolates were then tested for their ability to grow in the presence of cyanide and their tolerance to increasing levels of the compound. To evaluate each isolate’s cyanide-degrading activities, isolates were grown in the simulated and actual effluent, and a titrimetric method was used to quantify residual cyanide over a number of days. Cyanide degradation efficiency (DE) was then calculated for each isolate. Identification of positive isolates involved 16S rRNA gene amplification and sequence analysis through BLAST. Six cyanide-utilising bacterial strains were isolated. Two of the isolates were identified as Klebsiella spp. while the other two were shown to be different strains of Clostridium bifermentans. All isolates showed normal growth in the presence of cyanide, with growth being inhibited at 700 mg/L cyanide and beyond. Cyanide degradation efficiency for all isolates in the simulated effluent ranged from 79% to 97%. All isolates were able to remove cyanide from actual gold mine effluent with very high DE values (90 – 94%) being recorded. Isolates obtained in this study were able to efficiently remove cyanide from both simulated and actual effluent. This observation clearly demonstrates the feasibility of the biological removal of cyanide from cyanide-rich gold mine effluents and should, therefore, motivate research towards the possible large-scale application of this technology.

Keywords: cyanide effluent, bioremediation, Clostridium bifermentans, Klebsiella spp, environment

Procedia PDF Downloads 155
1492 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)

Procedia PDF Downloads 358
1491 Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Amit Verma, B. C. Meikap

Abstract:

Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life.

Keywords: carbon dioxide, scrubbing, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 205
1490 Bioactive Rare Acetogenins from the Red Alga Laurencia obtusa

Authors: Mohamed A. Ghandourah, Walied M. Alarif, Nahed O. Bawakid

Abstract:

Halogenated cyclic enynes and terpenoids are commonly identified among secondary metabolites of the genus Laurencia. Laurencian acetogenins are entirly C15 non-terpenoid haloethers with different carbocyclic nuclei; a specimen of the Red Sea red alga L. obtusa was investigated for its acetogenin content. The dichloromethane extract of the air-dried red algal material was fractionated on aluminum oxide column preparative thin-layer chromatography. Three new rare C12 acetogenin derivatives (1-3) were isolated from the organic extract obtained from Laurencia obtusa, collected from the territorial Red Sea water of Saudi Arabia. The structures of the isolated metabolites were established by means of spectroscopical data analyses. Examining the isolated compounds in activated human peripheral blood mononuclear cells (PBMC) revealed potent Anti-inflammatory activity as evidenced by inhibition of NFκB and release of other inflammatory mediators like TNF-α, IL-1β and IL-6.

Keywords: Red Sea, red algae, fatty acids, spectroscopy, anti-inflammatory

Procedia PDF Downloads 133
1489 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou

Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang

Abstract:

Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.

Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system

Procedia PDF Downloads 108
1488 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 482
1487 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 372
1486 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract

Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna

Abstract:

In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.

Keywords: barley, functional foods, olive leaf, polyphenols, shelf life

Procedia PDF Downloads 283
1485 Functional Role of Tyr12 in the Catalytic Activity of Zeta-Like Glutathione S-Transferase from Acidovorax sp. KKS102

Authors: D. Shehu, Z. Alias

Abstract:

Glutathione S-transferases (GSTs) are family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. The gene for KKSG9 was cloned, purified and biochemically characterized. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide (CuOOH). The enzyme also displayed dehalogenation function against dichloroacetate (a common substrate for zeta class GSTs) in addition to permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

Keywords: Acidovorax sp. KKS102, bioremediation, glutathione s-transferase, site-directed mutagenesis, zeta

Procedia PDF Downloads 136
1484 The Effect of Oil Pollution on Marine Microbial Populations in Israeli Coastal Waters

Authors: Yael Shai, Dror L. Angel, Dror Zurel, Peleg Astrahan, Maxim Rubin-Blum, Eyal Rahav

Abstract:

The high demand for oil and its by-products is symptomatic of the 21st century and occasionally leads to oil spills and pollution of coastal waters. Marine oil pollution may originate from a variety of sources -urban runoff, tanker cleaning, drilling activities, and oil spills. These events may release large amounts of highly toxic polycyclic aromatic hydrocarbons (PAHs) and other pollutants to coastal water, thereby threatening local marine life. Here, we investigated the effects of crude oil on the temporal dynamics of phytoplankton and heterotrophic bacteria in Israeli coastal waters. To this end, we added crude oil (500 µm thick layer, with and without additional nutrients; NO₃ and PO₄) to mesocosms (1m³ bags) containing oligotrophic surface coastal water collected near Haifa during summer and winter. Changes in phytoplankton biomass, activity and diversity were monitored daily for 5-6 days. Our results demonstrate that crude oil addition resulted in a pronounced decrease in phytoplankton biomass and production rates, while heterotrophic bacterial production increased significantly. Importantly, a few days post addition we found that the oil-degrading bacteria, Oleibacter sp. and Oleispira sp. appeared in the mesocosms and that the addition of nutrients (along with the crude oil) further increased this trend. This suggests that oil-degrading bacteria may be NO₃ and PO₄ limited in Israeli coastal waters. The results of this study should enable us to establish improved science-based environmental policy with respect to handling crude oil pollution in this region.

Keywords: heterotrophic bacteria, nutrients, mesocosm, oil pollution, oligotrophic, phytoplankton

Procedia PDF Downloads 141
1483 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 403
1482 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel

Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy

Abstract:

In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.

Keywords: burner selection, natural gas, analysis, recirculation

Procedia PDF Downloads 143
1481 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive

Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas

Abstract:

Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.

Keywords: biochar, biogas, bioreactor, sewage sludge

Procedia PDF Downloads 149
1480 Mesoporous Tussah Silk Fibroin Microspheres for Drug Delivery

Authors: Weitao Zhou, Qing Wang, Jianxin He, Shizhong Cui

Abstract:

Mesoporous Tussah silk fibroin (TSF) spheres were fabricated via the self-assembly of TSF molecules in aqueous solutions. The results showed that TSF particles were approximately three-dimensional spheres with the diameter ranging from 500nm to 6μm without adherence. More importantly, the surface morphology is mesoporous structure with nano-pores of 20nm - 200nm in size. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) studies demonstrated that mesoporous TSF spheres mainly contained beta-sheet conformation (44.1 %) as well as slight amounts of random coil (13.2 %). Drug release test was performed with 5-fluorouracil (5-Fu) as a model drug and the result indicated the mesoporous TSF microspheres had a good capacity of sustained drug release. It is expected that these stable and high-crystallinity mesoporous TSF sphere produced without organic solvents, which have significantly improved drug release properties, is a very promising material for controlled gene medicines delivery.

Keywords: Tussah silk fibroin, porous materials, microsphere, drug release

Procedia PDF Downloads 442
1479 Temperature Susceptibility for Optimal Biogas Production

Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji

Abstract:

Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.

Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test

Procedia PDF Downloads 183
1478 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes

Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi

Abstract:

The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml

Keywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture

Procedia PDF Downloads 455
1477 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media

Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde

Abstract:

Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.

Keywords: adsorption, aqueous media, fishbone, kinetic study

Procedia PDF Downloads 110
1476 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst

Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka

Abstract:

Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.

Keywords: eco-friendly leaching, optimization, metal recovery, leaching

Procedia PDF Downloads 50
1475 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 18
1474 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 282
1473 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water

Authors: Feleke Terefe Fanta

Abstract:

Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.

Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER

Procedia PDF Downloads 36