Search results for: mental health detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12736

Search results for: mental health detection

10936 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 193
10935 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 63
10934 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study

Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban

Abstract:

This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.

Keywords: school social conselling, school social workers, contextual model, attachment thory

Procedia PDF Downloads 138
10933 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 664
10932 Self-Directed-Car on GT Road: Grand Trunk Road

Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan

Abstract:

Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.

Keywords: SDC, gold, GT, knowledge-based system

Procedia PDF Downloads 376
10931 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 100
10930 Examining Coping Resources and Ways of Strategic Coping for Individuals with Spinal Cord Injury During the COVID-19 Crisis

Authors: Se-Hyuk Park, Hee-Jung Seo

Abstract:

Previous studies have investigated effective coping strategies for excessive stress, positive adaptation, resilience, mental health, and personal growth. However, to the best of the authors' knowledge, little research has been conducted to investigate how Koreans with physical disabilities deal with the COVID-19 pandemic. The purpose of this study was to identify coping strategies and coping resources that Koreans with physical disabilities utilized during the COVID-19 crisis. This study used semi-structured, in-depth interviews with 15 participants. Data were qualitatively analyzed using the constant comparative method with content mapping and content mining questions. We identified three salient themes that were used by participants as coping strategies to deal with various COVID-related challenges: (a) engagement in meaningful activities, (b) improvement of social and emotional support, and (c) experience of resilience. The findings of the present study highlighted that Korean adults with SCI actively engaged in various leisure activities, maintained and developed closer social relationships, and experienced resilience to face COVID-19-related stressors. These coping strategies were noted as a catalyst for physical health as well as psychological well-being of individuals with SCI.

Keywords: spinal cord injury, covid-19 pandemic, coping strategies, coping resources, leisure

Procedia PDF Downloads 48
10929 The Usage of Artificial Intelligence in Instagram

Authors: Alanod Alqasim, Yasmine Iskandarani, Sita Algethami, Jawaher alzughaiby

Abstract:

This study focuses on the usage of AI (Artificial Intelligence) systems and features on the Instagram application and how it influences user experience and satisfaction. The aim is to evaluate the techniques and current capabilities, restrictions, and potential future directions of AI in an Instagram application. Following a concise explanation of the core concepts underlying AI usage on Instagram. To answer this question, 19 randomly selected users were asked to complete a 9-question survey on their experience and satisfaction with the app's features (Filters, user preferences, translation tool) and authenticity. The results revealed that there were three prevalent allegations. These declarations include that Instagram has an extremely attractive user interface; secondly, Instagram creates a strong sense of community; and lastly, Instagram has an important influence on mental health.

Keywords: AI (Artificial Intelligence), instagram, features, satisfaction, experience

Procedia PDF Downloads 87
10928 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 84
10927 Study of Polish and Ukrainian Volunteers Helping War Refugees. Psychological and Motivational Conditions of Coping with Stress of Volunteer Activity

Authors: Agata Chudzicka-Czupała, Nadiya Hapon, Liudmyla Karamushka, Marta żywiołek-Szeja

Abstract:

Objectives: The study is about the determinants of coping with stress connected with volunteer activity for Russo-Ukrainian war 2022 refugees. We examined the mental health reactions, chosen psychological traits, and motivational functions of volunteers working in Poland and Ukraine in relation to their coping with stress styles. The study was financed with funds from the Foundation for Polish Science in the framework of the FOR UKRAINE Programme. Material and Method: The study was conducted in 2022. The study was a quantitative, questionnaire-based survey. Data was collected through an online survey. The volunteers were asked to assess their propensity to use different styles of coping with stress connected with their activity for Russo-Ukrainian war refugees using The Brief Coping Orientation to Problems Experienced Inventory (Brief-COPE) questionnaire. Depression, anxiety, and stress were measured using the Depression, Anxiety, and Stress (DASS)-21 item scale. Chosen psychological traits, psychological capital and hardiness, were assessed by The Psychological Capital Questionnaire and The Norwegian Revised Scale of Hardiness (DRS-15R). Then The Volunteer Function Inventory (VFI) was used. The significance of differences between the variable means of the samples was tested by the Student's t-test. We used multivariate linear regression to identify factors associated with coping with stress styles separately for each national sample. Results: The sample consisted of 720 volunteers helping war refugees (in Poland, 435 people, and 285 in Ukraine). The results of the regression analysis indicate variables that are significant predictors of the propensity to use particular styles of coping with stress (problem-focused style, emotion-focused style and avoidant coping). These include levels of depression and stress, individual psychological characteristics and motivational functions, different for Polish and Ukrainians. Ukrainian volunteers are significantly more likely to use all three coping with stress styles than Polish ones. The results also prove significant differences in the severity of anxiety, stress and depression, the selected psychological traits and motivational functions studied, which led volunteers to participate in activities for war refugees. Conclusions: The results show that depression and stress severity, as well as psychological capital and hardiness, and motivational factors are connected with coping with stress behavior. The results indicate the need for increased attention to the well-being of volunteers acting under stressful conditions. They also prove the necessity of guiding the selection of people for specific types of volu

Keywords: anxiety, coping with stress styles, depression, hardiness, mental health, motivational functions, psychological capital, resilience, stress, war, volunteer, civil society

Procedia PDF Downloads 75
10926 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 451
10925 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer

Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu

Abstract:

An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.

Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors

Procedia PDF Downloads 450
10924 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa

Authors: Refilwe Moeletsi

Abstract:

Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.

Keywords: remote sensing, GIS, change detection, granite quarries

Procedia PDF Downloads 317
10923 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 113
10922 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 93
10921 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers

Authors: Marwa Ragab, Eman El-Kimary

Abstract:

Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.

Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD

Procedia PDF Downloads 303
10920 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation

Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine

Abstract:

Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.

Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition

Procedia PDF Downloads 252
10919 The Relationship between Quality of Work and Employment, Self-Perceived Health and Use of Health Services among the Older Japanese Workforce

Authors: Jacques Wels

Abstract:

Japan has one of the highest average retirement ages within the OCDE and is paving the way to raise the retirement age to 70. However, the Japanese labour market is facing two main issues that can have detrimental effects on health: non-standard employment forms are widespread among the ageing workforce, and poor working conditions can contribute to explain poor health in late career. To assess such a relationship, the study uses data from JSTAR. Using mediation analysis, it particularly looks at the association between job dissatisfaction, employment status, self-perceived health (SPH), and use of health care services. Results show that work quality and employment status are associated with SPH. Contract work has a particularly negative impact and therefore contributes to explain the use of health care services but is not significantly associated with lower job satisfaction levels. SPH is a good predictor of the use of health care services.

Keywords: self-reported health, occupational health, employment, older workers, mediation

Procedia PDF Downloads 128
10918 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 179
10917 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins

Authors: Haiyang Su, Kun Qian

Abstract:

We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.

Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins

Procedia PDF Downloads 212
10916 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 471
10915 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 213
10914 Health Payments and Household Wellbeing in India: Examining the Role of Health Policy Interventions

Authors: Shailender Kumar

Abstract:

Current health policy pronouncements in India advocate for insurance-based financing mechanism to achieve universal health coverage (UHC), while undermine the role of comprehensive healthcare provision system. UHC is achieved when all people receive the health services they need without suffering financial hardship. This study, using 68th & 71st NSS rounds data, examines their relative and combined strength in achieving the above objective. Health-insurance has been unsuccessful in reducing prevalence and catastrophic effects of out-of-pocket payment and even dismantle the effectiveness of traditional way of health financing system. Healthcare provision is the best way forward to enhance health and well-being of households in condition if India removes existing inadequacies and inequalities in service provision across districts/states and ensure free/low cost medicines/diagnostics to the citizens.

Keywords: health policy, demand-side financing, supply-side financing, incidence of health payment

Procedia PDF Downloads 264
10913 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 240
10912 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 88
10911 Mobile Health Apps Can Cause More Harm Due to Health Anxiety Than Good

Authors: Malik Takreem Ahmad, Pablo Lamata, Rasi Mizori

Abstract:

Background: In recent years, mobile health apps have grown in popularity as a means for people to track and manage their health. While there is increasing worry that these applications may potentially contribute to the emergence of health anxiety, they can also help to encourage healthy behaviours and provide access to health information. Objective: The objective of this literature review is to look at available mhealth apps and critically evaluate the compromise between reassurance and anxiety. Methodology: A literature review was carried out to analyse the effects of mhealth apps on the creation of health anxiety within the general population. PubMed and SCOPUS were used to search for relevant articles, and abstracts were screened using inclusion criteria of the terms: mhealth apps; e-Health; healthcare apps; cyberchondria; Health anxiety; illness anxiety disorder. A total of 27 studies were included in the review. Results and discussion: The findings suggest a direct relationship between mobile health app use and health anxiety. The impact of mobile health apps on health anxiety may depend on how they are used - individuals receiving a constant stream of health-related information may trigger unnecessary concern about one's health. The need for more regulation and oversight is identified, which can lead to app quality and safety consistency. There are also concerns about data security and privacy and the resulting "digital gap" for individuals without mobiles or internet access. Conclusion: While health apps can be valuable tools for managing and tracking health, individuals need to use them in a balanced and informed way to avoid increased anxiety.

Keywords: mobile health, mhealth apps, cyberchondria, health anxiety

Procedia PDF Downloads 95
10910 Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study

Authors: R. Güçlü, E. Küçüksakarya

Abstract:

Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students.

Keywords: color term, gender, mental lexicon, word association task

Procedia PDF Downloads 134
10909 Autonomy in Pregnancy and Childbirth: The Next Frontier of Maternal Health Rights Advocacy

Authors: Alejandra Cardenas, Ona Flores, Fabiola Gretzinger

Abstract:

Since the 1990s, legal strategies for the promotion and protection of maternal health rights have achieved significant gains. Successful litigation in courts around the world have shown that these rights can be judicially enforceable. Governments and international organizations have acknowledged the importance of a human rights-based approach to maternal mortality and morbidity, and obstetric violence has been recognized as a human rights issue. Despite the progress made, maternal mortality has worsened in some regions of the world, while progress has stagnated elsewhere, and mistreatment in maternal care is reported almost universally. In this context, issues of maternal autonomy and decision-making during pregnancy, labor, and delivery as a critical barrier to access quality maternal health have been largely overlooked. Indeed, despite the principles of autonomy and informed consent in medical interventions being well-established in international and regional norms, how they are applied particularly during childbirth and pregnancy remains underdeveloped. National and global legal standards and decisions related to maternal health were reviewed and analyzed to determine how maternal autonomy and decision-making during pregnancy, labor, and delivery have been protected (or not) by international and national courts. The results of this legal research and analysis lead to the conclusion that a few standards have been set by courts regarding pregnant people’s rights to make choices during pregnancy and birth; however, most undermine the agency of pregnant people. These decisions recognize obstetric violence and gender-based discrimination, but fail to protect pregnant people’s autonomy, privacy, and their right to informed consent. As current human rights standards stand today, maternal health is the only field in medicine and law in which informed consent can be overridden, and patients can be forced to submit to treatments against their will. Unconsented treatment and loss of agency during pregnancy and childbirth can have long-term physical and mental impacts, reduce satisfaction and trust in health systems, and may deter future health-seeking behaviors. This research proposes a path forward that focuses on the pregnant person as an independent agent, relying on the doctrine of self-determination during pregnancy and childbirth, which includes access to the necessary conditions to enable autonomy and choice throughout pregnancy and childbirth as a critical step towards our approaches to reduce maternal mortality, morbidity, and mistreatment, and realize the promise of access to quality maternal health as a human right.

Keywords: autonomy in childbirth and pregnancy, choice, informed consent, jurisprudential analysis

Procedia PDF Downloads 58
10908 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors

Authors: Darshna Sharma, Suban K. Sahoo

Abstract:

The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.

Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT

Procedia PDF Downloads 405
10907 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 161