Search results for: mean bias error
706 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM
Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán
Abstract:
The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM
Procedia PDF Downloads 118705 Feasibility of Simulating External Vehicle Aerodynamics Using Spalart-Allmaras Turbulence Model with Adjoint Method in OpenFOAM and Fluent
Authors: Arpit Panwar, Arvind Deshpande
Abstract:
The study of external vehicle aerodynamics using Spalart-Allmaras turbulence model with adjoint method was conducted. The accessibility and ease of working with the Fluent module of ANSYS and OpenFOAM were considered. The objective of the study was to understand and analyze the possibility of bringing high-level aerodynamic simulation to the average consumer vehicle. A form-factor of BMW M6 vehicle was designed in Solidworks, which was analyzed in OpenFOAM and Fluent. The turbulence model being a single equation provides much faster convergence rate when clubbed with the adjoint method. Fluent being commercial software still does not allow us to solve Spalart-Allmaras turbulence model using the adjoint method. Hence, the turbulence model was solved using the SIMPLE method in Fluent. OpenFOAM being an open source provide flexibility in simulation but is not user-friendly. It supports solving the defined turbulence model with the adjoint method. The result generated from the simulation gives us acceptable values of drag, when validated with the result of percentage error in drag values for a notch-back vehicle model on an extensive simulation produced at 6th ANSA and μETA conference, Greece. The success of this approach will allow us to bring more aerodynamic vehicle body design to all segments of the automobile and not limiting it to just the high-end sports cars.Keywords: Spalart-Allmaras turbulence model, OpenFOAM, adjoint method, SIMPLE method, vehicle aerodynamic design
Procedia PDF Downloads 200704 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 123703 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 105702 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach
Authors: Godwin Chigozie Okpara
Abstract:
This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models
Procedia PDF Downloads 443701 Blind Hybrid ARQ Retransmissions with Different Multiplexing between Time and Frequency for Ultra-Reliable Low-Latency Communications in 5G
Authors: Mohammad Tawhid Kawser, Ishrak Kabir, Sadia Sultana, Tanjim Ahmad
Abstract:
A promising service category of 5G, popularly known as Ultra-Reliable Low-Latency Communications (URLLC), is devoted to providing users with the staunchest fail-safe connections in the splits of a second. The reliability of data transfer, as offered by Hybrid ARQ (HARQ), should be employed as URLLC applications are highly error-sensitive. However, the delay added by HARQ ACK/NACK and retransmissions can degrade performance as URLLC applications are highly delay-sensitive too. To improve latency while maintaining reliability, this paper proposes the use of blind transmissions of redundancy versions exploiting the frequency diversity of wide bandwidth of 5G. The blind HARQ retransmissions proposed so far consider narrow bandwidth cases, for example, dedicated short range communication (DSRC), shared channels for device-to-device (D2D) communication, etc., and thus, do not gain much from the frequency diversity. The proposal also combines blind and ACK/NACK based retransmissions for different multiplexing options between time and frequency depending on the current radio channel quality and stringency of latency requirements. The wide bandwidth of 5G justifies that the proposed blind retransmission, without waiting for ACK/NACK, is not palpably extravagant. A simulation is performed to demonstrate the improvement in latency of the proposed scheme.Keywords: 5G, URLLC, HARQ, latency, frequency diversity
Procedia PDF Downloads 36700 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 163699 Groundwater Influences Wellbeing of Farmers from Semi-Arid Areas of India: Assessment of Subjective Wellbeing
Authors: Seemabahen Dave, Maria Varua, Basant Maheshwari, Roger Packham
Abstract:
The declining groundwater levels and quality are acknowledged to be affecting the well-being of farmers especially those located in the semi-arid regions where groundwater is the only source of water for domestic and agricultural use. Further, previous studies have identified the need to examine the quality of life of farmers beyond economic parameters and for a shift in setting rural development policy goals to the perspective of beneficiaries. To address these gaps, this paper attempts to ascertain the subjective wellbeing of farmers from two semi-arid regions of India. The study employs the integrated conceptual framework for the assessment of individual and regional subjective wellbeing developed by Larson in 2009 at Australia. The method integrates three domains i.e. society, natural environment and economic services consisting of 37 wellbeing factors. The original set of 27 revised wellbeing factors identified by John Ward is further revised in current study to make it more region specific. Generally, researchers in past studies select factors of wellbeing based on literature and assign the weights arbitrary. In contrast, the present methodology employs a unique approach by asking respondents to identify the factors most important to their wellbeing and assign weights of importance based on their responses. This method minimises the selection bias and assesses the wellbeing from farmers’ perspectives. The primary objectives of this study are to identify key wellbeing attributes and to assess the influence of groundwater on subjective wellbeing of farmers. Findings from 507 farmers from 11 villages of two watershed areas of Rajasthan and Gujarat, India chosen randomly and were surveyed using a structured face-to-face questionnaire are presented in this paper. The results indicate that significant differences exist in the ranking of wellbeing factors at individual, village and regional levels. The top five most important factors in the study areas include electricity, irrigation infrastructure, housing, land ownership, and income. However, respondents are also most dissatisfied with these factors and correspondingly perceive a high influence of groundwater on them. The results thus indicate that intervention related to improvement of groundwater availability and quality will greatly improve the satisfaction level of well-being factors identified by the farmers.Keywords: groundwater, farmers, semi-arid regions, subjective wellbeing
Procedia PDF Downloads 259698 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 213697 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 350696 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images
Authors: Ki Moo Lim, Iman R. Tayibnapis
Abstract:
According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis
Procedia PDF Downloads 329695 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults
Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu
Abstract:
The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method
Procedia PDF Downloads 450694 Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field
Authors: M. Khazam, M. Altawil, A. Eljabri
Abstract:
Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development.Keywords: EoS models, gas-condensate, gas cycling, near critical fluid
Procedia PDF Downloads 318693 Satellite Multispectral Remote Sensing of Ozone Pollution
Authors: Juan Cuesta
Abstract:
Satellite observation is a fundamental component of air pollution monitoring systems, such as the large-scale Copernicus Programme. Next-generation satellite sensors, in orbit or programmed in the future, offer great potential to observe major air pollutants, such as tropospheric ozone, with unprecedented spatial and temporal coverage. However, satellite approaches developed for remote sensing of tropospheric ozone are based solely on measurements from a single instrument in a specific spectral range, either thermal infrared or ultraviolet. These methods offer sensitivity to tropospheric ozone located at the lowest at 3 or 4 km altitude above the surface, thus limiting their applications for ozone pollution analysis. Indeed, no current observation of a single spectral domain provides enough information to accurately measure ozone in the atmospheric boundary layer. To overcome this limitation, we have developed a multispectral synergism approach, called "IASI+GOME2", at the Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) laboratory. This method is based on the synergy of thermal infrared and ultraviolet observations of respectively the Infrared Atmospheric Sounding Interferometer (IASI) and the Global Ozone Monitoring Experiment-2 (GOME-2) sensors embedded in MetOp satellites that have been in orbit since 2007. IASI+GOME2 allowed the first satellite observation of ozone plumes located between the surface and 3 km of altitude (what we call the lowermost troposphere), as it offers significant sensitivity in this layer. This represents a major advance for the observation of ozone in the lowermost troposphere and its application to air quality analysis. The ozone abundance derived by IASI+GOME2 shows a good agreement with respect to independent observations of ozone based on ozone sondes (a low mean bias, a linear correlation larger than 0.8 and a mean precision of about 16 %) around the world during all seasons. Using IASI+GOME2, lowermost tropospheric ozone pollution plumes are quantified both in terms of concentrations and also in the amounts of ozone photo-chemically produced along transport and also enabling the characterization of the ozone pollution, such as what occurred during the lockdowns linked to the COVID-19 pandemic. The current paper will show the IASI+GOME2 multispectral approach to observe the lowermost tropospheric ozone from space and an overview of several applications on different continents and at a global scale.Keywords: ozone pollution, multispectral synergism, satellite, air quality
Procedia PDF Downloads 81692 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes
Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar
Abstract:
Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.Keywords: life time, pregnancy rate, production, service period, standardization
Procedia PDF Downloads 635691 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling
Authors: Johnson C. Y. Pang, Bo Pengb, Kara K. L. Reevesc, Allan C. L. Fud
Abstract:
Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding are potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26±5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms and quality of life (QOL), were analyzed by repeated-measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].Keywords: reliability, jumping, 3D motion analysis, anterior crucial ligament reconstruction
Procedia PDF Downloads 119690 Aquatic Intervention Research for Children with Autism Spectrum Disorders
Authors: Mehmet Yanardag, Ilker Yilmaz
Abstract:
Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works.Keywords: aquatic, autism, orientation, ASD, children
Procedia PDF Downloads 432689 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 498688 Optimal Sliding Mode Controller for Knee Flexion during Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons
Procedia PDF Downloads 82687 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode
Authors: Girish Chavadappanavar
Abstract:
The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).Keywords: climate impact, regression analysis, yield and forecast model, sugar models
Procedia PDF Downloads 71686 Double Burden of Malnutrition among Children under Five in Sub-Saharan Africa and Other Least Developed Countries: A Systematic Review
Authors: Getenet Dessie, Jinhu Li, Son Nghiem, Tinh Doan
Abstract:
Background: Concerns regarding malnutrition have evolved from focusing solely on single forms to addressing the simultaneous occurrence of multiple types, commonly referred to as the double or triple burden of malnutrition. Nevertheless, data concerning the concurrent occurrence of various types of malnutrition are scarce. Therefore, this systematic review and meta-analysis aims to assess the pooled prevalence of the double burden of malnutrition among children under five in Sub-Saharan Africa and other least-developed countries (LDCs). Methods: Electronic, web-based searches were conducted from January 15 to June 28, 2023, across several databases, including PubMed, Embase, Google Scholar, and the World Health Organization's Hinari portal, as well as other search engines, to identify primary studies published up to June 28, 2023. Laboratory-based cross-sectional studies on children under the age of five were included. Two independent authors assessed the risk of bias and the quality of the identified articles. The primary outcomes of this study were micronutrient deficiencies and the comorbidity of stunting and anemia, as well as wasting and anemia. The random-effects model was utilized for analysis. The association of identified variables with the various forms of malnutrition was also assessed using adjusted odds ratios (AOR) with a 95% confidence interval (CI). This review was registered in PROSPERO with the reference number CRD42023409483. Findings: The electronic search generated 6,087 articles, 93 of which matched the inclusion criteria for the final meta-analysis. Micronutrient deficiencies were prevalent among children under five in Sub-Saharan Africa and other LDCs, with rates ranging from 16.63% among 25,169 participants for vitamin A deficiency to 50.90% among 3,936 participants for iodine deficiency. Iron deficiency anemia affected 20.56% of the 63,121 participants. The combined prevalence of wasting anemia and stunting anemia was 5.41% among 64,709 participants and 19.98% among 66,016 participants, respectively. Both stunting and vitamin A supplementation were associated with vitamin A and iron deficiencies, with adjusted odds ratios (AOR) of 1.54 (95% CI: 1.01, 2.37) and 1.37 (95% CI: 1.21, 1.55), respectively. Interpretation: The prevalence of the double burden of malnutrition among children under the age of five was notably high in Sub-Saharan Africa and other LDCs. These findings indicate a need for increased attention and a focus on understanding the factors influencing this double burden of malnutrition.Keywords: children, Sub-Saharan Africa, least developed countries, double burden of malnutrition, systematic review, meta-analysis
Procedia PDF Downloads 81685 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations
Authors: James Adewale, Joshua Sunday
Abstract:
In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent
Procedia PDF Downloads 501684 A Numerical Investigation of Total Temperature Probes Measurement Performance
Authors: Erdem Meriç
Abstract:
Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes
Procedia PDF Downloads 134683 Development and Verification of the Idom Shielding Optimization Tool
Authors: Omar Bouhassoun, Cristian Garrido, César Hueso
Abstract:
The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.Keywords: optimization, shielding, nuclear, genetic algorithm
Procedia PDF Downloads 110682 Distributional and Dynamic impact of Energy Subsidy Reform
Authors: Ali Hojati Najafabadi, Mohamad Hosein Rahmati, Seyed Ali Madanizadeh
Abstract:
Governments execute energy subsidy reforms by either increasing energy prices or reducing energy price dispersion. These policies make less use of energy per plant (intensive margin), vary the total number of firms (extensive margin), promote technological progress (technology channel), and make additional resources to redistribute (resource channel). We estimate a structural dynamic firm model with endogenous technology adaptation using data from the manufacturing firms in Iran and a country ranked the second-largest energy subsidy plan by the IMF. The findings show significant dynamics and distributional effects due to an energy reform plan. The price elasticity of energy consumption in the industrial sector is about -2.34, while it is -3.98 for large firms. The dispersion elasticity, defined as the amounts of changes in energy consumption by a one-percent reduction in the standard error of energy price distribution, is about 1.43, suggesting significant room for a distributional policy. We show that the intensive margin is the main driver of energy price elasticity, whereas the other channels mostly offset it. In contrast, the labor response is mainly through the extensive margin. Total factor productivity slightly improves in light of the reduction in energy consumption if, at the same time, the redistribution policy boosts the aggregate demands.Keywords: energy reform, firm dynamics, structural estimation, subsidy policy
Procedia PDF Downloads 95681 Moderating Effect of Different Social Supports on the Relationship between Workplace Bullying and Intention to Occupation Leave in Nurses
Authors: Chenchieh Chang
Abstract:
Objectives: This study had two objectives. First, it used affective events theory to investigate the relationship between workplace bullying and the intention to resign in nurses, a topic rarely explored in previous studies. Second, according to the conservation of resource theory, individuals encountering work incidents will utilize resources that are at their disposal to strengthen or weaken the effects of the incidents on them. Such resources include social support that comes from their bosses, colleagues, family, and friends. To answer the question of whether different social supports exert distinct effects on alleviating stress experienced by nurses, this study examined the moderating effects of different social supports on the relationship between workplace bullying and nurses’ intention to resign. Method: This study was approved by an institutional review board (code number: 105070) and adopted purposive sampling to survey 911, full-time nurses. Results: Work-related bullying exerted a significant and positive effect on the intention to resign, whereas bullying pertaining to interpersonal relationships and body-related bullying nonsignificantly affected intention to resign. Support from supervisors enhanced the effect of work-related bullying on an intention to resign, whereas support from colleagues and family did not moderate said effect. Research Limitations/Implications: The self-reporting method and cross-sectional research design adopted in this study might have resulted in common method variance and limited the ability to make causal inferences. This study suggests future studies to obtain measures of predictor and criterion variables from different sources or ensure a temporal, proximal, or psychological separation between predictor and criterion in the collection of data to avoid the common method bias. Practical Implications: First, businesses should establish a friendly work environment and prevent employees from encountering workplace bullying. Second, because social support cannot diminish the effect of workplace bullying on employees’ intention to resign, businesses should offer other means of assistance. For example, business managers may introduce confidential systems for employees to report workplace bullying; or they may establish consultation centers where employees can properly express their thoughts and feelings when encountering workplace bullying.Keywords: workplace bullying, intention to occupation leave, social supports, nurses
Procedia PDF Downloads 114680 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint
Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung
Abstract:
Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow
Procedia PDF Downloads 127679 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 250678 Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples
Authors: Zelalem Bitew, Adane Kassa, Beyene Misgan
Abstract:
In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples.Keywords: gallic acid, diphenyl amine sulfonic acid, adsorptive anodic striping square wave voltammetry, honey, peanut
Procedia PDF Downloads 78677 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 188