Search results for: shear span-depth ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5637

Search results for: shear span-depth ratio

3867 Evaluation of Subsurface Drilling and Geo Mechanic Properties Based on Stratum Index Factor for Humanities Environment

Authors: Abdull Halim Abdul, Muhaimin Sulam

Abstract:

This paper is about a subsurface study of Taman Pudu Ulu, Cheras, Kuala Lumpur with emphasize of Geo mechanic properties based on stratum index factor in humanities environment. Subsurface drilling and seismic data were used to understand the subsurface condition of the study area such as the type and thickness of the strata. Borehole and soil samples were recovered Geo mechanic properties of the area by conducting number of experiments. Taman Pudu Ulu overlies the Kuala Lumpur Limestone formation that is known for its karstic features such as caves and cavities. Hence by knowing the Geo mechanic properties such as the normal strain and shear strain we can plan a safer and economics construction that is plan at the area in the future.

Keywords: stratum, index factor, geo mechanic properties, humanities environment

Procedia PDF Downloads 494
3866 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 184
3865 Measuring the Effect of Co-Composting Oil Sludge with Pig, Cow, Horse And Poultry Manures on the Degradation in Selected Polycyclic Aromatic Hydrocarbons Concentrations

Authors: Ubani Onyedikachi, Atagana Harrison Ifeanyichukwu, Thantsha Mapitsi Silvester

Abstract:

Components of oil sludge (PAHs) are known cytotoxic, mutagenic and potentially carcinogenic compounds also bacteria and fungi have been found to degrade PAHs to innocuous compounds. This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation in selected PAHs present in oil sludge. Soil spiked with oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil: manure and wood-chips in a ratio of 2:1 (w/v) spiked soil: wood-chips. Control was set up similar as the one above but without manure. The mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Highest temperature reached was 27.5 °C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78μg/dwt/day. Microbial growth and activities were enhanced; bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane coupled with gas chromatography/mass spectrometry (GC/MS). Results from PAH measurements showed reduction between 77% and 99%. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs.

Keywords: animal manures, bioremediation, co-composting, oil refinery sludge, PAHs

Procedia PDF Downloads 268
3864 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 523
3863 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 570
3862 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method

Procedia PDF Downloads 307
3861 Circulating Oxidized LDL and Insulin Resistance among Obese School Students

Authors: Nayera E. Hassan, Sahar A. El-Masry, Mones M. Abu Shady, Rokia A. El Banna, Muhammad Al-Tohamy, Mehrevan M. Abd El-Moniem, Mona Anwar

Abstract:

Circulating oxidized LDL (ox-LDL) is associated with obesity, insulin resistance (HOMA), metabolic syndrome, and cardiovascular disease in adults. Little is known about relations in children. Aim: To assess association of ox-LDL with fat distribution and insulin resistance in a group of obese Egyptian children. Methods: Study is cross-sectional consisting of 68 obese children, with a mean age of 9.96 ± 1.32. Each underwent a complete physical examination; blood pressure (SBP, DBP) and anthropometric measurements (weight, height, BMI; waist, hip circumferences, waist/hip ratio), biochemical tests of fasting blood glucose (FBS), insulin levels; lipid profile (TC, LDL,HDL, TG) and ox-LDL; calculated HOMA. Sample was classified according to waist/hip ratio into: group I with and group II without central obesity. Results: ox-LDL showed significant positive correlation with LDL and TC in all groups of obesity. After adjustment for age and sex, significant positive correlation was detected between ox-LDL with SBP, DBP, TC, LDL, insulin, and HOMA in group II and with TC and FBS in group I. Insignificant association was detected between ox-LDL and other anthropometric parameters including BMI in any group of obese children (p > 0.05). Conclusions: ox-LDL, as a marker of oxidative stress is not correlated with BMI among all studied obese children (aged 6-12 years). Increased oxidative stress has causal effects on insulin resistance in obese children without central obesity and on fasting blood sugar in those with central obesity. These findings emphasize the importance of obesity during childhood and suggest that the metabolic complications of obesity and body fat distribution are detectable early in life.

Keywords: ox-LDL, obesity, insulin resistance, children

Procedia PDF Downloads 357
3860 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body

Authors: Haoui Rabah

Abstract:

The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: supersonic flow, viscous flow, finite volume, blunt body

Procedia PDF Downloads 602
3859 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method

Authors: Raju Murugan, Pankaj S. Kolhe

Abstract:

The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.

Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio

Procedia PDF Downloads 213
3858 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations

Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu

Abstract:

This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.

Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform

Procedia PDF Downloads 336
3857 Valorization of Local Materials in the Waterproofing Technique of Landfills Site "TLS"

Authors: M. Debieche, F. Kaoua

Abstract:

This paper deals with the use two locals materials abundant in our country, with the view to use a mixture in the waterproofing the landfills. Our interest comes from the necessity to the environment protection, which has recently considerably grown. The site's waterproofing technique, in the landfills sites, is nowadays a very necessary condition to protect the environment, which requires the use of appropriate materials. To this end, an optimal mixture ensuring good performance in terms of hydraulic conductivity, durability and shear strength, mixtures based of sand at different concentrations of sodium bentonite, at compact state are prepared and studied. This study showed that a low permeability of mixture (sand / bentonite) can be achieved 6% of sodium bentonite. This mixture confers also good mechanical behavior, expressed by the recorded, reduction of friction (φ) and the increase of the cohesion (C). Thus, the selected formulation represents an optimal mixture for waterproofing systems. It guarantees an economical and ecological advantages.

Keywords: hydraulic conductivity, sand, sodium bentonite, sustainability

Procedia PDF Downloads 272
3856 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 87
3855 A Comparison between Russian and Western Approach for Deep Foundation Design

Authors: Saeed Delara, Kendra MacKay

Abstract:

Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.

Keywords: pile capacity, pile settlement, Russian approach, western approach

Procedia PDF Downloads 164
3854 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 118
3853 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 300
3852 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 144
3851 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 320
3850 Correlation Volumic Shrinkage, Conversion Degree of Dental Composites

Authors: A. Amirouche, M. Mouzali, D. C. Watts

Abstract:

During polymerization of dental composites, the volumic shrinkage is related to the conversion degree. The variation of the volumic shrinkage (S max according to the degree of conversion CD.), was examined for the experimental composites: (BisGMA/TEGDMA): (50/50), (75/25), (25/75) mixed with seven radiopac fillers: La2O3, BaO, BaSO4, SrO, ZrO2 , SrZrO3 and BaZrO 3 with different contents in weight, from 0 to 80%. We notice that whatever the filler and the composition in monomers, Smax increases with the increase in CD. This variation is, linear in particular in the case of the fillers containing only one heavy metal, and that whatever the composition in monomers. For a given salt, the increase of BisGMA composition leads to significant increase of S max more pronounced than the increase in CD. The variation of ratio (S max / CD.) with the increase of filler content is negligible. However the fillers containing two types of heavy metals have more effect on the volumic shrinkage than on the degree of conversion. Whatever the composition in monomer, and the content of filler containing only one heavy atom, S max increases with the increase in CD. Nevertheless, S max is affected by the viscosity of the medium compared with CD. For high percentages of mineral fillers (≥ 70% in weight), the diagrams S max according to CD are deviated of the linearity, owing to the fact that S max is affected by the high percentage of fillers compared with CD. The number of heavy atoms influences directly correlation (S max / CD.). In the case of the two mineral fillers: SrZrO3 and BaZrO3 ratio (S max / CD) moves away from the proportionality. The linearity of the diagrams Smax according to CD is less regular, due to the viscosity of high content of BisGMA. The study of Smax and DC of four commercial composites are presented and compared to elaborate experimental composites.

Keywords: Dental composites, degree of conversion, volumic shrinkage, photopolymerization

Procedia PDF Downloads 370
3849 Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection

Authors: Anupriya, Bikramjit Sinfh, Radhay Shyam

Abstract:

In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag.

Keywords: total pressure loss, flame holder, supersonic combustion, combustion efficiency, cavity, nozzle

Procedia PDF Downloads 91
3848 The Determinants of Financial Stability: Evidence from Jordan

Authors: Wasfi Al Salamat, Shaker Al-Kharouf

Abstract:

This study aims to examine the determinants of financial stability for 13 commercial banks listed on the Amman stock exchange (ASE) over the period (2007-2016) after controlling for the independent variables: return on equity (ROE), return on assets (ROA), earnings per share (EPS), growth in gross domestic product (GDP), inflation rate and debt ratio to measure the financial stability by three main variables: capital adequacy, non-performing loans and the number of returned checks. The balanced panel data statistical approach has been used for data analysis. Results are estimated by using multiple regression models. The empirical results suggested that there is statistically significant negative effect of inflation rate and debt ratio on the capital adequacy while there is statistically significant positive effect of growth in gross domestic product on capital adequacy. In contrast, there is statistically significant negative effect of return on equity and growth in gross domestic product on the non-performing loans while there is statistically significant positive effect of inflation rate on non-performing loans. Finally, there is statistically significant negative effect of growth in gross domestic product on the number of returned checks while there is statistically significant positive effect of inflation rate on the number of returned checks.

Keywords: capital adequacy, financial stability, non-performing loans, number of returned checks, ASE

Procedia PDF Downloads 223
3847 The Effects of Three Months of HIIT on Plasma Adiponectin on Overweight College Men

Authors: M. J. Pourvaghar, M. E. Bahram, M. Sayyah, Sh. Khoshemehry

Abstract:

Adiponectin is a cytokine secreted by the adipose tissue that functions as an anti-inflammatory, antiathrogenic and anti-diabetic substance. Its density is inversely correlated with body mass index. The purpose of this research was to examine the effect of 12 weeks of high intensity interval training (HIIT) with the level of serum adiponectin and some selected adiposity markers in overweight and fat college students. This was a clinical research in which 24 students with BMI between 25 kg/m2 to 30 kg/m2. The sample was purposefully selected and then randomly assigned into two groups of experimental (age =22.7±1.5 yr.; weight = 85.8±3.18 kg and height =178.7±3.29 cm) and control (age =23.1±1.1 yr.; weight = 79.1±2.4 kg and height =181.3±4.6 cm), respectively. The experimental group participated in an aerobic exercise program for 12 weeks, three sessions per weeks at a high intensity between 85% to 95% of maximum heart rate (considering the over load principle). Prior and after the termination of exercise protocol, the level of serum adiponectin, BMI, waist to hip ratio, and body fat percentages were calculated. The data were analyzed by using SPSS: PC 16.0 and statistical procedure such as ANCOVA, was used. The results indicated that 12 weeks of intensive interval training led to the increase of serum adiponectin level and decrease of body weight, body fat percent, body mass index and waist to hip ratio (P < 0.05). Based on the results of this research, it may be concluded that participation in intensive interval training for 12 weeks is a non-invasive treatment to increase the adiponectin level while decreasing some of the anthropometric indices associated with obesity or being overweight.

Keywords: adiponectin, cardiovascular, interval, overweight, training

Procedia PDF Downloads 315
3846 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 244
3845 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials

Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo

Abstract:

Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.

Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength

Procedia PDF Downloads 387
3844 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils

Authors: Inci Develioglu, Hasan Firat Pulat

Abstract:

Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.

Keywords: compressibility, consolidation, geotechnical properties, organic matter content, dredged soil

Procedia PDF Downloads 256
3843 Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia

Authors: S. Mahmoudi, A. Belhaj Mohamed, M. Saidi, F. Rezgui

Abstract:

Depositional environment and source potential of the different organic rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated using different geochemical techniques (Rock-Eval pyrolysis, GC-MS) of over than 130 cutting samples. The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7 % indicating good to excellent source rock. The relatively high IH values (reaching 547 mg HC/g TOC) and the low values of t19/t23 ratio (down to 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%.

Keywords: biomarker, depositional environment, devonian, source rock

Procedia PDF Downloads 474
3842 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section

Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi

Abstract:

Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.

Keywords: composite, columns, reinforced concrete, GFRP, axial load

Procedia PDF Downloads 54
3841 Diagnostic Accuracy of the Tuberculin Skin Test for Tuberculosis Diagnosis: Interest of Using ROC Curve and Fagan’s Nomogram

Authors: Nouira Mariem, Ben Rayana Hazem, Ennigrou Samir

Abstract:

Background and aim: During the past decade, the frequency of extrapulmonary forms of tuberculosis has increased. These forms are under-diagnosed using conventional tests. The aim of this study was to evaluate the performance of the Tuberculin Skin Test (TST) for the diagnosis of tuberculosis, using the ROC curve and Fagan’s Nomogram methodology. Methods: This was a case-control, multicenter study in 11 anti-tuberculosis centers in Tunisia, during the period from June to November2014. The cases were adults aged between 18 and 55 years with confirmed tuberculosis. Controls were free from tuberculosis. A data collection sheet was filled out and a TST was performed for each participant. Diagnostic accuracy measures of TST were estimated using ROC curve and Area Under Curve to estimate sensitivity and specificity of a determined cut-off point. Fagan’s nomogram was used to estimate its predictive values. Results: Overall, 1053 patients were enrolled, composed of 339 cases (sex-ratio (M/F)=0.87) and 714 controls (sex-ratio (M/F)=0.99). The mean age was 38.3±11.8 years for cases and 33.6±11 years for controls. The mean diameter of the TST induration was significantly higher among cases than controls (13.7mm vs.6.2mm;p=10-6). Area Under Curve was 0.789 [95% CI: 0.758-0.819; p=0.01], corresponding to a moderate discriminating power for this test. The most discriminative cut-off value of the TST, which were associated with the best sensitivity (73.7%) and specificity (76.6%) couple was about 11 mm with a Youden index of 0.503. Positive and Negative predictive values were 3.11% and 99.52%, respectively. Conclusion: In view of these results, we can conclude that the TST can be used for tuberculosis diagnosis with a good sensitivity and specificity. However, the skin induration measurement and its interpretation is operator dependent and remains difficult and subjective. The combination of the TST with another test such as the Quantiferon test would be a good alternative.

Keywords: tuberculosis, tuberculin skin test, ROC curve, cut-off

Procedia PDF Downloads 66
3840 Mitigation of Seismic Forces Effect on Highway Bridge Using Aseismic Bearings

Authors: Kaoutar Zellat, Tahar Kadri

Abstract:

The purpose of new aseismic techniques is to provide an additional means of energy dissipation, thereby reducing the transmitted acceleration into the superstructure. In order to demonstrate the effectiveness of aseismic bearings technique and understand the behavior of seismically isolated bridges by such devices a three-span continuous deck bridge made of reinforced concrete is considered. The bridge is modeled as a discrete model and the relative displacements of the isolation bearing are crucial from the design point of view of isolation system and separation joints at the abutment level. The systems presented here are passive control systems and the results of some important experimental tests are also included. The results show that the base shear in the piers is significantly reduced for the isolated system as compared to the non isolated system in the both directions of the bridge. This indicates that the use of aseismic systems is effective in reducing the earthquake response of the bridge.

Keywords: aseismic bearings, bridge isolation, bridge, seismic response

Procedia PDF Downloads 357
3839 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks

Procedia PDF Downloads 149
3838 Is Hormone Replacement Therapy Associated with Age-Related Macular Degeneration? A Systematic Review and Meta-Analysis

Authors: Hongxin Zhao, Shibing Yang, Bingming Yi, Yi Ning

Abstract:

Background: A few studies have found evidence that exposure to endogenous or postmenopausal exogenous estrogens may be associated with a lower prevalence of age-related macular degeneration (AMD), but dispute over this association is ongoing due to inconsistent results reported by different studies. Objectives: To conduct a systematic review and meta-analysis to investigate the association between hormone replacement therapy (HRT) use and AMD. Methods: Relevant studies that assessed the association between HRT and AMD were searched through four databases (PubMed, Web of Science, Cochrane Library, EMBASE) and reference lists of retrieved studies. Study selection, data extraction and quality assessment were conducted by three independent reviewers. The fixed-effect meta-analyses were performed to estimate the association between HRT ever-use and AMD by pooling risk ratio (RR) or odds ratio (OR) across studies. Results: The review identified 2 prospective and 7 cross-sectional studies with 93992 female participants that reported an estimate of the association between HRT ever-use and presence of early AMD or late AMD. Meta-analyses showed that there were no statistically significant associations between HRT ever-use and early AMD (pooled RR for cohort studies was 1.04, 95% CI 0.86 - 1.24; pooled OR for cross-sectional studies was 0.91, 95% CI 0.82 - 1.01). The pooled results from cross-sectional studies also showed no statistically significant association between HRT ever-use and late AMD (OR 1.01; 95% CI 0.89 - 1.15). Conclusions: The pooled effects from observational studies published to date indicate that HRT use is associated with neither early nor late AMD. Exposure to HRT may not protect women from developing AMD.

Keywords: hormone replacement therapy, age-related macular degeneration, meta-analysis, systematic review

Procedia PDF Downloads 348