Search results for: regime shift
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2034

Search results for: regime shift

264 The Markers -mm and dämmo in Amharic: Developmental Approach

Authors: Hayat Omar

Abstract:

Languages provide speakers with a wide range of linguistic units to organize and deliver information. There are several ways to verbally express the mental representations of events. According to the linguistic tools they have acquired, speakers select the one that brings out the most communicative effect to convey their message. Our study focuses on two markers, -mm and dämmo, in Amharic (Ethiopian Semitic language). Our aim is to examine, from a developmental perspective, how they are used by speakers. We seek to distinguish the communicative and pragmatic functions indicated by means of these markers. To do so, we created a corpus of sixty narrative productions of children from 5-6, 7-8 to 10-12 years old and adult Amharic speakers. The experimental material we used to collect our data is a series of pictures without text 'Frog, Where are you?'. Although -mm and dämmo are each used in specific contexts, they are sometimes analyzed as being interchangeable. The suffix -mm is complex and multifunctional. It marks the end of the negative verbal structure, it is found in the relative structure of the imperfect, it creates new words such as adverbials or pronouns, it also serves to coordinate words, sentences and to mark the link between macro-propositions within a larger textual unit. -mm was analyzed as marker of insistence, topic shift marker, element of concatenation, contrastive focus marker, 'bisyndetic' coordinator. On the other hand, dämmo has limited function and did not attract the attention of many authors. The only approach we could find analyzes it in terms of 'monosyndetic' coordinator. The paralleling of these two elements made it possible to understand their distinctive functions and refine their description. When it comes to marking a referent, the choice of -mm or dämmo is not neutral, depending on whether the tagged argument is newly introduced, maintained, promoted or reintroduced. The presence of these morphemes explains the inter-phrastic link. The information is seized by anaphora or presupposition: -mm goes upstream while dämmo arrows downstream, the latter requires new information. The speaker uses -mm or dämmo according to what he assumes to be known to his interlocutors. The results show that -mm and dämmo, although all the speakers use them both, do not always have the same scope according to the speaker and vary according to the age. dämmo is mainly used to mark a contrastive topic to signal the concomitance of events. It is more commonly used in young children’s narratives (F(3,56) = 3,82, p < .01). Some values of -mm (additive) are acquired very early while others are rather late and increase with age (F(3,56) = 3,2, p < .03). The difficulty is due not only because of its synthetic structure but primarily because it is multi-purpose and requires a memory work. It highlights the constituent on which it operates to clarify how the message should be interpreted.

Keywords: acquisition, cohesion, connection, contrastive topic, contrastive focus, discourse marker, pragmatics

Procedia PDF Downloads 127
263 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 156
262 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria

Authors: K. Bencherif, M. Bellifa

Abstract:

The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.

Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen

Procedia PDF Downloads 380
261 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority

Authors: Vahid Asadzadeh, Amin Ataee

Abstract:

Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau‎ and Mouffe had in mind‎) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.

Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media

Procedia PDF Downloads 137
260 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 73
259 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality

Authors: David Sinfield, Thomas Cochrane, Marcos Steagall

Abstract:

While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.

Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications

Procedia PDF Downloads 232
258 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior

Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou

Abstract:

It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.

Keywords: drainage, motorcycle safety, superelevation, transition curves, vertical grade

Procedia PDF Downloads 92
257 A Collaborative Approach to Improving Mental and Physical Health-Related Outcomes for a Heart Transplant Patient Through Music and Art Therapy Treatment

Authors: Elizabeth Laguaite, Alexandria Purdy

Abstract:

Heart transplant recipients face psycho-physiological stressors, including pain, lengthy hospitalizations, delirium, and existential crises. They pose an increased risk for Post Traumatic Stress Disorder (PTSD) and can be a predictor of poorer mental and physical Health-Related Quality of Life (HRQOL) outcomes and increased mortality. There is limited research on the prevention of Post Traumatic Stress Symptoms (PTSS) in transplant patients. This case report focuses on a collaborative Music and Art Therapy intervention used to improve outcomes for HMH transplant recipient John (Alias). John, a 58-year-old man with congestive heart failure, was admitted to HMH in February of 2021 with cardiogenic shock, cannulated with an Intra-aortic Balloon Pump, Impella 5.5, and Venoarterial Extracorporeal Membrane Oxygenation (VA-ECMO) as a bridge to heart and kidney transplant. He was listed as status 1 for transplant. Music Therapy and Art Therapy (MT and AT) were ordered by the physician for mood regulation, trauma processing and anxiety management. During MT/AT sessions, John reported a history of anxiety and depression exacerbated by medical acuity, shortness of breath, and lengthy hospitalizations. He expressed difficulty sleeping, pain, and existential questions. Initially seen individually by MT/AT, it was determined he could benefit from a collaborative approach due to similar thematic content within sessions. A Life Review intervention was developed by MT/AT. The purpose was for him to creatively express, reflect and process his medical narrative, including the identification of positive and negative events leading up to admission at HMH, the journey to transplant, and his hope for the future. Through this intervention, he created artworks that symbolized each event and paired them with songs, two of which were composed with the MT during treatment. As of September 2023, John has not been readmitted to the hospital and expressed that this treatment is what “got him through transplant”. MT and AT can provide opportunities for a patient to reminisce through creative expression, leading to a shift in the personal meaning of these experiences, promoting resolution, and ameliorating associated trauma. The closer to trauma it is processed, the less likely to develop PTSD. This collaborative MT/AT approach could improve long-term outcomes by reducing mortality and readmission rates for transplant patients.

Keywords: art therapy, music therapy, critical care, PTSD, trauma, transplant

Procedia PDF Downloads 65
256 Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications

Authors: Huseyin Sinan Gunesli

Abstract:

Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management.

Keywords: process safety principles, energy security, natural gas pipeline operations, alarm rationalization, alarm management, alarm management application

Procedia PDF Downloads 88
255 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South

Authors: Rati Sandeep Choudhari

Abstract:

Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.

Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach

Procedia PDF Downloads 111
254 Global Dimensions of Shakespearean Cinema: A Study of Shakespearean Presence around the Globe

Authors: Rupali Chaudhary

Abstract:

Shakespeare has been widely revisited by dramatists, critics, filmmakers and scholars around the globe. Shakespeare's kaleidoscopic work has been borrowed and redesigned into resonant patterns by artists, thus weaving myriad manifestations to pick from. Along with adaptation into wholly verbal medium (e.g., translations) the practice of indigenization through performing arts has played a great role in amplifying the reach of plays. The proliferation of Shakespeare's oeuvre commenced with the spread of colonialism itself. The plays illustrating the core values of Western tradition were introduced in the colonies. Therefore, the colonial domination extended to cultural domination. The plays were translated and adapted by the locals at times as it is and sometimes intermingled with the altered landscape and culture. The present paper discusses the global dimensions of Shakespearean cinema along with the historical cinematic shift from silent era to spoken dialogue in multiple languages. The methodology followed is descriptive in nature, and related information is availed from related literature, i.e., books, research articles and films. America and Europe dominated the silent era Shakespearean film production, thereby giving the term 'global' a less broad meaning. Five nations that dominated silent Shakespearean cinema were the United States, England, Italy, France, and Germany. Gradually the work of the exemplary figure with artistic and literary greatness surpassed the boundaries of the colonies and became a global legacy. Presently apart from English speaking nations Shakespearean films have been shot or produced in many of non-Anglophone locales. The findings indicate that when discussing about global dimensions of Shakespearean cinema various factors can be considered: involvement of actors and directors of foreign origin, transportability and universal comprehensibility of visual imagery across geographical borders, commodification of art or West's use of it as a tool of cultural hegemony or promotion of international amity, propagation of interculturalism through individual director's cultural translations and localization of Western art. Understanding of Shakespeare as a global export also depends on how an individual Shakespearean film works. Shakespeare's global appeal for cinema does not reside alone in his exquisite writings, distinctive characters, the setting, the story and the plots that have nurtured cinema since the medium's formative years. Shakespeare's global cinematic appeal is present in the spirit of cinema itself, i.e., the moving images capturing human behaviour and emotions that the plays invoke in audiences.

Keywords: adaptation, global dimensions, Shakespeare, Shakespearean cinema

Procedia PDF Downloads 121
253 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration

Authors: Sujatha Edla

Abstract:

Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.

Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic

Procedia PDF Downloads 45
252 Smart Contracts: Bridging the Divide Between Code and Law

Authors: Abeeb Abiodun Bakare

Abstract:

The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.

Keywords: smart-contracts, law, blockchain, legal, technology

Procedia PDF Downloads 30
251 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 116
250 Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs

Authors: Szymon Kuczynski

Abstract:

Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption.

Keywords: adsorption, capillary condensation, phase envelope, nanopores, unconventional natural gas

Procedia PDF Downloads 325
249 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 62
248 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 229
247 Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle

Authors: Aloke Bapli, Debabrata Seth

Abstract:

Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles.

Keywords: photophysics, reverse micelle, rotational relaxation, solvent relaxation

Procedia PDF Downloads 144
246 Implementation of Learning Disability Annual Review Clinics to Ensure Good Patient Care, Safety, and Equality in Covid-19: A Two Pass Audit in General Practice

Authors: Liam Martin, Martha Watson

Abstract:

Patients with learning disabilities (LD) are at increased risk of physical and mental illness due to health inequality. To address this, NICE recommends that people from the age of 14 with a learning disability should have an annual LD health check. This consultation should include a holistic review of the patient’s physical, mental and social health needs with a view of creating an action plan to support the patient’s care. The expected standard set by the Quality and Outcomes Framework (QOF) is that each general practice should review at least 75% of their LD patients annually. During COVID-19, there have been barriers to primary care, including health anxiety, the shift to online general practice and the increase in GP workloads. A surgery in North London wanted to assess whether they were falling short of the expected standard for LD patient annual reviews in order to optimize care post Covid-19. A baseline audit was completed to assess how many LD patients were receiving their annual reviews over the period of 29th September 2020 to 29th September 2021. This information was accessed using EMIS Web Health Care System (EMIS). Patients included were aged 14 and over as per QOF standards. Doctors were not notified of this audit taking place. Following the results of this audit, the creation of learning disability clinics was recommended. These clinics were recommended to be on the ground floor and should be a dedicated time for LD reviews. A re-audit was performed via the same process 6 months later in March 2022. At the time of the baseline audit, there were 71 patients aged 14 and over that were on the LD register. 54% of these LD patients were found to have documentation of an annual LD review within the last 12 months. None of the LD patients between the ages of 14-18 years old had received their annual review. The results were discussed with the practice, and dedicated clinics were set up to review their LD patients. A second pass of the audit was completed 6 months later. This showed an improvement, with 84% of the LD patients registered at the surgery now having a documented annual review within the last 12 months. 78% of the patients between the ages of 14-18 years old had now been reviewed. The baseline audit revealed that the practice was not meeting the expected standard for LD patient’s annual health checks as outlined by QOF, with the most neglected patients being between the ages of 14-18. Identification and awareness of this vulnerable cohort is important to ensure measures can be put into place to support their physical, mental and social wellbeing. Other practices could consider an audit of their annual LD health checks to make sure they are practicing within QOF standards, and if there is a shortfall, they could consider implementing similar actions as used here; dedicated clinics for LD patient reviews.

Keywords: COVID-19, learning disability, learning disability health review, quality and outcomes framework

Procedia PDF Downloads 72
245 Investigating the Application of Composting for Phosphorous Recovery from Alum Precipitated and Ferric Precipitated Sludge

Authors: Saba Vahedi, Qiuyan Yuan

Abstract:

A vast majority of small municipalities and First Nations communities in Manitoba operate facultative or aerated lagoons for wastewater treatment, and most of them use Ferric Chloride (FeCl3) or alum (usually in the form of Al2(SO4)3 ·18H2O) as coagulant for phosphorous removal. The insoluble particles that form during the coagulation process result in a massive volume of sludge which is typically left in the lagoons. Therefore, phosphorous, which is a valuable nutrient, is lost in the process. In this project, the complete recovery of phosphorous from the sludge that is produced in the process of phosphorous removal from wastewater lagoons by using a controlled composting process is investigated. Objective The main objective of this project is to compost alum precipitated sludge that is produced in the process of phosphorous removal in wastewater treatment lagoons in Manitoba. The ultimate goal is to have a product that will meet the characteristics of Class A biosolids in Canada. A number of parameters, including the bioavailability of nutrients in the composted sludge and the toxicity of the sludge, will be evaluated Investigating the bioavailability of phosphorous in the final compost product. The compost will be used as a source of P compared to a commercial fertilizer (monoammonium phosphate MAP) Experimental setup Three different batches of composts piles have been run using the Alum sludge and Ferric sludge. The alum phosphate sludge was collected from an innovative phosphorous removal system at the RM of Taché . The collected sludge was sent to ALS laboratory to analyze the C/N ratio, TP, TN, TC, TAl, moisture contents, pH, and metals concentrations. Wood chips as the bulking agent were collected at the RM of Taché landfill The sludge in the three piles were mixed with 3x dry woodchips. The mixture was turned every week manually. The temperature, the moisture content, and pH were monitored twice a week. The temperature of the mixtures was remained above 55 °C for two weeks. Each pile was kept for ten weeks to get mature. The final products have been applied to two different plants to investigate the bioavailability of P in the compost product as well as the toxicity of the product. The two types of plants were selected based on their sensitivity, growth time, and their compatibility with the Manitoba climate, which are Canola, and switchgrass. The pots are weighed and watered every day to replenish moisture lost by evapotranspiration. A control experiment is also conducted by using topsoil soil and chemical fertilizers (MAP). The experiment will be carried out in a growth room maintained at a day/night temperature regime of 25/15°C, a relative humidity of 60%, and a corresponding photoperiod of 16 h. A total of three cropping (seeding to harvest) cycles need be completed, with each cycle at 50 d in duration. Harvested biomass must be weighed and oven-dried for 72 h at 60°C. The first cycle of growth Canola and Switchgrasses in the alum sludge compost, harvested at the day 50, oven dried, chopped into bits and fine ground in a mill grinder (< 0.2mm), and digested using the wet oxidation method in which plant tissue samples were digested with H2SO4 (99.7%) and H2O2 (30%) in an acid block digester. The digested plant samples need to be analyzed to measure the amount of total phosphorus.

Keywords: wastewater treatment, phosphorus removal, composting alum sludge, bioavailibility of pohosphorus

Procedia PDF Downloads 65
244 Changing MBA Identities: Using Critical Reflection inside and out in Finding a New Narrative

Authors: Keith Schofield, Leigh Morland

Abstract:

Storytelling is an established means of leadership and management development and is also considered a form of leadership of self and others in its own right. This study focuses on the utility of storytelling in the development of management narratives in an MBA programme; sources include programme participants as well as international recruiters, whose voices are often only heard in terms of economic contribution and globalisation. For many MBA candidates, the return to study requires the development of a new identity which complements their professional identity; each candidate has their own journey and expectations, the use of story can enable candidates to explore their aspirations and assumptions and give voice to previously unspoken ideas. For international recruitment, the story of market development and change must be captured if MBAs are to remain fit for purpose. If used effectively, story acts as a form of critical reflection that can inform the learning journeys of individuals, emerging identities as well as the ongoing design and development of programmes. The landscape of management education is shifting; the MBA begins to attract a different kind of candidate, some are younger than before, others are seeking validation for their existing work practices, yet more are entrepreneurial and wish to capitalise on an institutional experience to further their career. There is a shift in context, creating uncertainty and ambiguity for programme managers and recruiters, thus requiring institutions to create a new MBA narrative. This study utilises Lego SeriousPlay as the means to engaging programme participants and international agents in telling the story of their MBA. We asked MBA participants to tell the story of their leadership and management aspirations and compare these to stories of their development journeys, allowing for critical reflection of their respective development gaps. We asked international recruiters, who act as university agents and promote courses in the student’s country of origin, to explore their mental models of MBA candidates and their learning agenda. The purpose of this process was to explore the agent’s perception of the MBA programme and to articulate the student journey from a recruitment perspective. The paper’s unique contribution is in combining these stories in order to explore the assumptions that determine programme design. Data drawn from reflective statements together with images of Lego ‘builds’ created the opportunity for reflection between the mental models of these groups. Findings will inform the design of the MBA journey and experience; we review the extent to which the changing identities of learners are congruent with programme design. Data from international recruiters also determines the extent to which marketing and recruitment strategies identify with would be candidates.

Keywords: critical reflection, programme management, recruitment, storytelling

Procedia PDF Downloads 216
243 Shift from Distance to In-Person Learning of Indigenous People’s Schools during the COVID 19 Pandemic: Gains and Challenges

Authors: May B. Eclar, Romeo M. Alip, Ailyn C. Eay, Jennifer M. Alip, Michelle A. Mejica, Eloy C.eclar

Abstract:

The COVID-19 pandemic has significantly changed the educational landscape of the Philippines. The groups affected by these changes are the poor and those living in the Geographically Isolated and Depressed Areas (GIDA), such as the Indigenous Peoples (IP). This was heavily experienced by the ten IP schools in Zambales, a province in the country. With this in mind, plus other factors relative to safety, the Schools Division of Zambales selected these ten schools to conduct the pilot implementation of in-person classes two (2) years after the country-wide school closures. This study aimed to explore the lived experiences of the school heads of the first ten Indigenous People’s (IP) schools that shifted from distance learning to limited in-person learning. These include the challenges met and the coping mechanism they set to overcome the challenges. The study is linked to experiential learning theory as it focuses on the idea that the best way to learn things is by having experiences). It made use of qualitative research, specifically phenomenology. All the ten school heads from the IP schools were chosen as participants in the study. Afterward, participants underwent semi-structured interviews, both individual and focus group discussions, for triangulation. Data were analyzed through thematic analysis. As a result, the study found that most IP schools did not struggle to convince parents to send their children back to school as they downplay the pandemic threat due to their geographical location. The parents struggled the most during modular learning since many of them are either illiterate, too old to teach their children, busy with their lands, or have too many children to teach. Moreover, there is a meager vaccination rate in the ten barangays where the schools are located because of local beliefs. In terms of financial needs, school heads did not find it difficult even though funding is needed to adjust the schools to the new normal because of the financial support coming from the central office. Technical assistance was also provided to the schools by division personnel. Teachers also welcomed the idea of shifting back to in-person classes, and minor challenges were met but were solved immediately through various mechanisms. Learning losses were evident since most learners struggled with essential reading, writing, and counting skills. Although the community has positively received the conduct of in-person classes, the challenges these IP schools have been experiencing pre-pandemic were also exacerbated due to the school closures. It is therefore recommended that constant monitoring and provision of support must continue to solve other challenges the ten IP schools are still experiencing due to in-person classes

Keywords: In-person learning, indigenous peoples, phenomenology, philippines

Procedia PDF Downloads 100
242 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region

Authors: Kassem Natouf, Ihab Jnad

Abstract:

In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.

Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices

Procedia PDF Downloads 9
241 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 320
240 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics

Authors: Nothando Gwazani, K. R. Marembo

Abstract:

An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.

Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink

Procedia PDF Downloads 146
239 A Paradigm Shift into the Primary Teacher Education Program in Bangladesh

Authors: Happy Kumar Das, Md. Shahriar Shafiq

Abstract:

This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.

Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach

Procedia PDF Downloads 206
238 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 218
237 Political Party Mobilization Strategies in Ghana: A Comparative Analysis of Three Constituencies

Authors: F. Agbele

Abstract:

Elections are core democratic institutions. Consequently, voter participation during elections is paramount to democratic governance as it serves as a medium to legitimize authority and make the privileges of electoral democracy meaningful to citizens. To this effect, the topic of voter mobilization and subsequent turnout level have been largely studied in advanced democracies. In young and consolidating democracies, the debate has, however, revolves around the huge reliance on ethnic and regional appeals. According to the Author’s knowledge, studies on electoral mobilization especially within the African context have argued the use of ethnic linkages by political parties to mobilize voters during elections. Literature has however not differentiated between the level of democratic dispensation among African countries and the use of ethnic linkages. The question, however, is whether the state of the country’s democracy determines the strategies employed by political parties to induce voter participation. In other words, do parties simply play ethno-regional cards as strongly suggested by literature or will consider an arrayed of strategies to mobilize voters? Additionally, studies have not differentiated the impact of mobilization strategy within a country, i.e. between high to low turnout areas. They have also not distinguished between strategies employed by an incumbent or an opposition party. This paper, therefore, is a comparative analysis of voter mobilization in Ghana. It uses original survey and interview data from three constituencies in Ghana: Nanton, Assin North, and Ellembelle, which are typical cases of high, average and low turnout areas, respectively. The data were concurrently collected during fieldworks conducted in November 2016 to February 2017, and again from July to August 2017. The study found that political parties within a consolidating democracy employ a blend of strategies to ensure turnout by both parties’ faithful and swing voters. The dominant strategies used depends on whether the party is an incumbent or in opposition. While an incumbent may depend more on personalistic and clientelistic strategies, parties in opposition will largely use programmatic strategies, which entails making many campaign promises. Additionally, opposition parties do use clientelistic tactics, but not on the same level as the incumbent. Similarly, within the context of this study, the use of ethnic linkage by political parties to mobilize voters has not been found to be as strong as suggested in the literature. Further, location was key in determining the strategy to use. In all, the consolidation process of a democratic country like Ghana means the change of mobilization strategies used by political parties, which entail a gradual shift from ethnic linkages to programmatic and other forms of non-programmatic strategies.

Keywords: comparative analysis, elections, mobilization strategies, voter turnout

Procedia PDF Downloads 158
236 Comparison Between Two Techniques (Extended Source to Surface Distance & Field Alignment) Of Craniospinal Irradiation (CSI) In the Eclipse Treatment Planning System

Authors: Naima Jannat, Ariful Islam, Sharafat Hossain

Abstract:

Due to the involvement of the large target volume, Craniospinal Irradiation makes it challenging to achieve a uniform dose, and it requires different isocenters. This isocentric junction needs to shift after every five fractions to overcome the possibility of hot and cold spots. This study aims to evaluate the Planning Target Volume coverage & sparing Organ at Risk between two techniques and shows that the Field Alignment Technique does not need replanning and resetting. Planning method for Craniospinal Irradiation by Eclipse treatment planning system Field Alignment and Extended Source to Surface Distance technique was developed where 36 Gy in 20 Fraction at the rate of 1.8 Gy was prescribed. The patient was immobilized in the prone position. In the Field Alignment technique, the plan consists of half beam blocked parallel opposed cranium and a single posterior cervicospine field was developed by sharing the same isocenter, which obviates divergence matching. Further, a single field was created to treat the remaining lumbosacral spine. Matching between the inferior diverging edge of the cervicospine field and the superior diverging edge of a lumbosacral field, the field alignment option was used, which automatically matches the field edge divergence as per the field alignment rule in Eclipse Treatment Planning System where the couch was set to 2700. In the Extended Source to Surface Distance technique, two parallel opposed fields were created for the cranium, and a single posterior cervicospine field was created where the Source to Surface Distance was from 120-140 cm. Dose Volume Histograms were obtained for each organ contoured and for each technique used. In all, the patient’s maximum dose to Planning Target Volume is higher for the Extended Source to Surface Distance technique to Field Alignment technique. The dose to all surrounding structures was increased with the use of a single Extended Source to Surface Distance when compared to the Field Alignment technique. The average mean dose to Eye, Brain Steam, Kidney, Oesophagus, Heart, Liver, Lung, and Ovaries were respectively (58% & 60 %), (103% & 98%), (13% & 15%), (10% & 63%), (12% & 16%), (33% & 30%), (14% & 18%), (69% & 61%) for Field Alignment and Extended Source to Surface Distance technique. However, the clinical target volume at the spine junction site received a less homogeneous dose with the Field Alignment technique as compared to Extended Source to Surface Distance. We conclude that, although the use of a single field Extended Source to Surface Distance delivered a more homogenous, but its maximum dose is higher than the Field Alignment technique. Also, a huge advantage of the Field Alignment technique for Craniospinal Irradiation is that it doesn’t need replanning and resetting up of patients after every five fractions and 95% prescribed dose was received by more than 95% of the Planning Target Volume in all the plane with the acceptable hot spot.

Keywords: craniospinalirradiation, cranium, cervicospine, immobilize, lumbosacral spine

Procedia PDF Downloads 97
235 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 257