Search results for: terrestrial carbon sink
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3266

Search results for: terrestrial carbon sink

3266 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics

Authors: Nothando Gwazani, K. R. Marembo

Abstract:

An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.

Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink

Procedia PDF Downloads 125
3265 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 100
3264 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 50
3263 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 196
3262 Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, flow holes

Procedia PDF Downloads 502
3261 Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques

Authors: Kanwal Javid, Shazia Pervaiz, Maria Mumtaz, Muhammad Ameer Nawaz Akram

Abstract:

Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air.

Keywords: carbon sequestration, grasslands, global warming, climate change.

Procedia PDF Downloads 158
3260 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks

Authors: Ebrahim Alrashed

Abstract:

Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.

Keywords: energy-aware routing, reliability, sink-hole attack, WSN

Procedia PDF Downloads 369
3259 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation

Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw

Abstract:

This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.

Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia

Procedia PDF Downloads 133
3258 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 134
3257 Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India

Authors: M. Elanchezhian, C. Gunasekaran, A. Agnes Deepa, M. Salahudeen

Abstract:

In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands.

Keywords: biodiversity, climate change, mukuruthi national park, terrestrial invertebrates

Procedia PDF Downloads 492
3256 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink

Authors: Benkherbache Souad

Abstract:

This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.

Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation

Procedia PDF Downloads 159
3255 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Man Young Kim, Gyo Woo Lee

Abstract:

In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, symmetrical arrangement

Procedia PDF Downloads 376
3254 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 124
3253 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems

Authors: Zongyao Sha

Abstract:

Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.

Keywords: vegetation phenology, growing season, NPP, correlation analysis

Procedia PDF Downloads 71
3252 Thermal Performance of Radial Heat Sinks for LED Applications

Authors: Jongchul Park, Chan Byon

Abstract:

In this study, the thermal performance of radial heat sinks for LED applications is investigated numerically and experimentally. The effect of geometrical parameters such as inner radius, fin height, fin length, and fin spacing, as well as the Elenbaas number, is considered. In addition, the effects of augmentation of concentric ring, perforation, and duct are extensively explored in order to enhance the thermal performance of conventional radial heat sink. The results indicate that the Elenbaas number and the fin radius have a significant effect on the thermal performance of the heat sink. The concentric ring affects the performance much, but the degree of affection is highly dependent on the orientation. The perforation always brings about higher thermal performance. The duct can effectively prevent the bypass of the natural convection flow, which in turn reduces the thermal resistance of the radial heat sink significantly.

Keywords: heat transfer, radial heat sink, LED, Elenbaas

Procedia PDF Downloads 383
3251 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 506
3250 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 31
3249 Drug Residues Disposal from Wastewater Using Carbon Nanomaterials

Authors: Stefan Nicolae, Cristina Cirtoaje, Emil Petrescu, Florin-Razvan Duca

Abstract:

In the context of the accelerated expansion of urban agglomerations and the exponential development of industry, a huge amount of water is used, and a crisis of drinking water may occur any time. Classic wastewater treatment removes most pollutants but, for some chemical residues, special methods are needed. Carbon nanotubes and other carbon materials might be used in many cases [1-2], especially for heavy metals removal but also on pharmaceutical products such as paracetamol [3]. Our research has confirmed the better efficiency of nanotubes compared to graphene on paracetamol removal from water, but even better results were obtained on single-walled nanotubes (SWCNTs) and graphene nanoplatelets. This can be due to their better dispersion in water which leads to an increased contact surface, so we propose a filtration system of membranes and carbon materials that can be used for paracetamol removal from wastewater but also for other drugs that affect the aquatic life as well as terrestrial animals and people who use this contaminated water.

Keywords: applied physics, wastewater, nanomaterials, enviromental science

Procedia PDF Downloads 164
3248 Thermal Performance of Plate-Fin Heat Sink with Lateral Perforation

Authors: Sakkarin Chingulpitak, Somchai Wongwises

Abstract:

Over the past several decades, the development of electronic devices has led to higher performance. Therefore, an electronic cooling system is important for the electronic device. A heat sink which is a part of the electronic cooling system is continuously studied in the research field to enhance the heat transfer. To author’s best knowledge, there have been only a few articles which reported the thermal performance of plate-fin heat sink with perforation. This research aims to study on the flow and heat transfer characteristics of the solid-fin heat sink (SFHS) and laterally perforated plate-fin heat sink (LAP-PFHS). The SFHS and LAP-PFHSs are investigated on the same fin dimensions. The LAP-PFHSs are performed with a 27 perforation number and two different diameters of circular perforation (3 mm and 5 mm). The experimental study is conducted under various Reynolds numbers from 900 to 2,000 and the heat input of 50W. The experimental results show that the LAP-PFHS with perforation diameter of 5 mm gives the minimum thermal resistance about 25% lower than SFHS. The thermal performance factor which takes into account the ratio of the Nusselt number and ratio of friction factor is used to find the suitable design parameters. The experimental results show that the LAP-PFHS with the perforation diameter of 3 mm provides the thermal performance of 15% greater than SFHS. In addition, the simulation study is presented to investigate the effect of the air flow behavior inside the perforation on the thermal performance of LAP-PFHS.

Keywords: heat sink, parallel flow, circular perforation, non-bypass flow

Procedia PDF Downloads 118
3247 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 351
3246 Exploring Tree Growth Variables Influencing Carbon Sequestration in the Face of Climate Change

Authors: Funmilayo Sarah Eguakun, Peter Oluremi Adesoye

Abstract:

One of the major problems being faced by human society is that the global temperature is believed to be rising due to human activity that releases carbon IV oxide (CO2) to the atmosphere. Carbon IV oxide is the most important greenhouse gas influencing global warming and possible climate change. With climate change becoming alarming, reducing CO2 in our atmosphere has become a primary goal of international efforts. Forest landsare major sink and could absorb large quantities of carbon if the trees are judiciously managed. The study aims at estimating the carbon sequestration capacity of Pinus caribaea (pine)and Tectona grandis (Teak) under the prevailing environmental conditions and exploring tree growth variables that influencesthe carbon sequestration capacity in Omo Forest Reserve, Ogun State, Nigeria. Improving forest management by manipulating growth characteristics that influences carbon sequestration could be an adaptive strategy of forestry to climate change. Random sampling was used to select Temporary Sample Plots (TSPs) in the study area from where complete enumeration of growth variables was carried out within the plots. The data collected were subjected to descriptive and correlational analyses. The results showed that average carbon stored by Pine and Teak are 994.4±188.3 Kg and 1350.7±180.6 Kg respectively. The difference in carbon stored in the species is significant enough to consider choice of species relevant in climate change adaptation strategy. Tree growth variables influence the capacity of the tree to sequester carbon. Height, diameter, volume, wood density and age are positively correlated to carbon sequestration. These tree growth variables could be manipulated by the forest manager as an adaptive strategy for climate change while plantations of high wood density speciescould be relevant for management strategy to increase carbon storage.

Keywords: adaptation, carbon sequestration, climate change, growth variables, wood density

Procedia PDF Downloads 343
3245 Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms

Authors: L. Steponavičiūtė, L. Steponavičienė

Abstract:

Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (Escherichia coli, Staphylococcus aureus and Candida albicans) and terrestrial flora (Phaseolus vulgaris and Lepidium sativum). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles.

Keywords: nanomaterials, ecotoxicology, nanoparticles, ecosystems

Procedia PDF Downloads 276
3244 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 132
3243 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.

Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol

Procedia PDF Downloads 498
3242 Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran

Authors: Saeed Mohammadirad

Abstract:

During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets.

Keywords: carbon credits, carbon markets, accounting, flexible mechanisms

Procedia PDF Downloads 371
3241 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 349
3240 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 220
3239 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 245
3238 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 104
3237 Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems

Authors: Tiyisani L. Chavalala, Nicole B. Richoux, Martin H. Villet

Abstract:

Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies.

Keywords: emerging aquatic insects, in-falling terrestrial insects, reciprocal resource subsidies, stable isotopes

Procedia PDF Downloads 179