Search results for: bi-directional long and short-term memory networks
7771 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1987770 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1617769 Resiliency in Fostering: A Qualitative Study of Highly Experienced Foster Parents
Authors: Ande Nesmith
Abstract:
There is an ongoing shortage of foster parents worldwide to take on a growing population of children in need of out-of-home care. Currently, resources are primarily aimed at recruitment rather than retention. Retention rates are extraordinarily low, especially in the first two years of fostering. Qualitative interviews with 19 foster parents averaging 20 years of service provided insight into the challenges they faced and how they overcame them. Thematic analysis of interview transcripts identified sources of stress and resiliency. Key stressors included lack of support and responsiveness from the children’s social workers, false maltreatment allegations, and secondary trauma from children’s destructive behaviors and emotional dysregulation. Resilient parents connected with other foster parents for support, engaged in creative problem-solving, recognized that positive feedback from children usually arrives years later, and through training, understood the neurobiological impact of trauma on child behavior. Recommendations include coordinating communication between the foster parent licensing agency social workers and the children’s social workers, creating foster parent support networks and mentoring, and continuous training on trauma including effective parenting strategies. Research is needed to determine whether these resilience indicators in fact lead to long-term retention. Policies should include a mechanism to develop a cohesive line of communication and connection between foster parents and the children’s social workers as well as their respective agencies.Keywords: foster care stability, foster parent burnout, foster parent resiliency, foster parent retention, trauma-informed fostering
Procedia PDF Downloads 3507768 A Review of Lexical Retrieval Intervention in Primary Progressive Aphasia and Alzheimer's Disease: Mechanisms of Change, Cognition, and Generalisation
Authors: Ashleigh Beales, Anne Whitworth, Jade Cartwright
Abstract:
Background: While significant benefits of lexical retrieval intervention are evident within the Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD) literature, an understanding of the mechanisms that underlie change or improvement is limited. Change mechanisms have been explored in the non-progressive post-stroke literature that may offer insight into how interventions affect change with progressive language disorders. The potential influences of cognitive factors may also play a role here, interacting with the aims of intervention. Exploring how such processes have been applied is likely to grow our understanding of how interventions have, or have not, been effective, and how and why generalisation is likely, or not, to occur. Aims: This review of the literature aimed to (1) investigate the proposed mechanisms of change which underpin lexical interventions, mapping the PPA and AD lexical retrieval literature to theoretical accounts of mechanisms that underlie change within the broader intervention literature, (2) identify whether and which nonlinguistic cognitive functions have been engaged in intervention with these populations and any proposed influence, and (3) explore evidence of linguistic generalisation, with particular reference to change mechanisms employed in interventions. Main contribution: A search of Medline, PsycINFO, and CINAHL identified 36 articles that reported data for individuals with PPA or AD following lexical retrieval intervention. A review of the mechanisms of change identified 10 studies that used stimulation, 21 studies utilised relearning, three studies drew on reorganisation, and two studies used cognitive-relay. Significant treatment gains, predominantly based on linguistic performance measures, were reported for all client groups for each of the proposed mechanisms. Reorganisation and cognitive-relay change mechanisms were only targeted in PPA. Eighteen studies incorporated nonlinguistic cognitive functions in intervention; these were limited to autobiographical memory (16 studies), episodic memory (three studies), or both (one study). Linguistic generalisation outcomes were inconsistently reported in PPA and AD studies. Conclusion: This review highlights that individuals with PPA and AD may benefit from lexical retrieval intervention, irrespective of the mechanism of change. Thorough application of a theory of intervention is required to gain a greater understanding of the change mechanisms, as well as the interplay of nonlinguistic cognitive functions.Keywords: Alzheimer's disease, lexical retrieval, mechanisms of change, primary progressive aphasia
Procedia PDF Downloads 2037767 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing
Authors: Kedibone Masenya, Memory Tekere, Jasper Rees
Abstract:
Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.Keywords: bacteria, multitrophic, sorghum, target sequencing
Procedia PDF Downloads 2837766 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 6397765 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 867764 A Review of Current Trends in Grid Balancing Technologies
Authors: Kulkarni Rohini D.
Abstract:
While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar
Procedia PDF Downloads 707763 3D Dynamic Modeling of Transition Zones
Authors: Edina Koch, Péter Hudacsek
Abstract:
In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.Keywords: culvert, dynamic load, HS small model, railway transition zone
Procedia PDF Downloads 2897762 The Impacts of Export in Stimulating Economic Growth in Ethiopia: ARDL Model Analysis
Authors: Natnael Debalklie Teshome
Abstract:
The purpose of the study was to empirically investigate the impacts of export performance and its volatility on economic growth in the Ethiopian economy. To do so, time-series data of the sample period from 1974/75 – 2017/18 were collected from databases and annual reports of IMF, WB, NBE, MoFED, UNCTD, and EEA. The extended Cobb-Douglas production function of the neoclassical growth model framed under the endogenous growth theory was used to consider both the performance and instability aspects of export. First, the unit root test was conducted using ADF and PP tests, and data were found in stationery with a mix of I(0) and I(1). Then, the bound test and Wald test were employed, and results showed that there exists long-run co-integration among study variables. All the diagnostic test results also reveal that the model fulfills the criteria of the best-fitted model. Therefore, the ARDL model and VECM were applied to estimate the long-run and short-run parameters, while the Granger causality test was used to test the causality between study variables. The empirical findings of the study reveal that only export and coefficient of variation had significant positive and negative impacts on RGDP in the long run, respectively, while other variables were found to have an insignificant impact on the economic growth of Ethiopia. In the short run, except for gross capital formation and coefficients of variation, which have a highly significant positive impact, all other variables have a strongly significant negative impact on RGDP. This shows exports had a strong, significant impact in both the short-run and long-run periods. However, its positive and statistically significant impact is observed only in the long run. Similarly, there was a highly significant export fluctuation in both periods, while significant commodity concentration (CCI) was observed only in the short run. Moreover, the Granger causality test reveals that unidirectional causality running from export performance to RGDP exists in the long run and from both export and RGDP to CCI in the short run. Therefore, the export-led growth strategy should be sustained and strengthened. In addition, boosting the industrial sector is vital to bring structural transformation. Hence, the government has to give different incentive schemes and supportive measures to exporters to extract the spillover effects of exports. Greater emphasis on price-oriented diversification and specialization on major primary products that the country has a comparative advantage should also be given to reduce value-based instability in the export earnings of the country. The government should also strive to increase capital formation and human capital development via enhancing investments in technology and quality of education to accelerate the economic growth of the country.Keywords: export, economic growth, export diversification, instability, co-integration, granger causality, Ethiopian economy
Procedia PDF Downloads 777761 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1137760 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile
Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa
Abstract:
The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand
Procedia PDF Downloads 1727759 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma
Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam
Abstract:
Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.Keywords: systems biology, ependymoma, deg, network analysis
Procedia PDF Downloads 2987758 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.Keywords: handover, HetNets, multi-attribute decision making, small cells
Procedia PDF Downloads 1197757 Growth and Bone Health in Children following Liver Transplantation
Authors: Faris Alkhalil, Rana Bitar, Amer Azaz, Hisham Natour, Noora Almeraikhi, Mohamad Miqdady
Abstract:
Background: Children with liver transplantation are achieving very good survival and so there is now a need to concentrate on achieving good health in these patients and preventing disease. Immunosuppressive medications have side effects that need to be monitored and if possible avoided. Glucocorticoids and calcineurin inhibitors are detrimental to bone and mineral homeostasis in addition steroids can also affect linear growth. Steroid sparing regimes in renal transplant children has shown to improve children’s height. Aim: We aim to review the growth and bone health of children post liver transplant by measuring bone mineral density (BMD) using dual energy X-ray absorptiometry (DEXA) scan and assessing if there is a clear link between poor growth and impaired bone health and use of long term steroids. Subjects and Methods: This is a single centre retrospective Cohort study, we reviewed the medical notes of children (0-16 years) who underwent a liver transplantation between November 2000 to November 2016 and currently being followed at our centre. Results: 39 patients were identified (25 males and 14 females), the median transplant age was 2 years (range 9 months - 16 years), and the median follow up was 6 years. Four patients received a combined transplant, 2 kidney and liver transplant and 2 received a liver and small bowel transplant. The indications for transplant included, Biliary Atresia (31%), Acute Liver failure (18%), Progressive Familial Intrahepatic Cholestasis (15%), transplantable metabolic disease (10%), TPN related liver disease (8%), Primary Hyperoxaluria (5%), Hepatocellular carcinoma (3%) and other causes (10%). 36 patients (95%) were on a calcineurin inhibitor (34 patients were on Tacrolimus and 2 on Cyclosporin). The other three patients were on Sirolimus. Low dose long-term steroids was used in 21% of the patients. A considerable proportion of the patients had poor growth. 15% were below the 3rd centile for weight for age and 21% were below the 3rd centile for height for age. Most of our patients with poor growth were not on long term steroids. 49% of patients had a DEXA scan post transplantation. 21% of these children had low bone mineral density, one patient had met osteoporosis criteria with a vertebral fracture. Most of our patients with impaired bone health were not on long term steroids. 20% of the patients who did not undergo a DEXA scan developed long bone fractures and 50% of them were on long term steroid use which may suggest impaired bone health in these patients. Summary and Conclusion: The incidence of impaired bone health, although studied in limited number of patients; was high. Early recognition and treatment should be instituted to avoid fractures and improve bone health. Many of the patients were below the 3rd centile for weight and height however there was no clear relationship between steroid use and impaired bone health, reduced weight and reduced linear height.Keywords: bone, growth, pediatric, liver, transplantation
Procedia PDF Downloads 2797756 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation
Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez
Abstract:
With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).Keywords: component carrier, carrier aggregation, LTE-advanced, scheduling
Procedia PDF Downloads 1997755 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 3547754 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree
Procedia PDF Downloads 4087753 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 2237752 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 3977751 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Authors: Tripatjot S. Panag, J. S. Dhillon
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.Keywords: coverage, disjoint sets, heuristic, lifetime, scheduling, Wireless sensor networks, WSN
Procedia PDF Downloads 4527750 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy
Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş
Abstract:
Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance
Procedia PDF Downloads 2467749 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 3007748 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 207747 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1327746 Bacterial Causes of Cerebral Abscess and Impact on Long Term Patient Outcomes
Authors: Umar Rehman, Holly Roy, K. T. Tsang, D. S. Jeyaretna, W Singleton, B. Fisher, P. A. Glew, J. Greig, Peter C. Whitfield
Abstract:
Introduction: A brain abscess is a life-threatening condition, carrying significant mortality. It requires rapid identification and treatment. Management involves a combination of antibiotics and surgery. The aim of the current study was to identify common bacteria responsible for cerebral abscesses as well as the long term functional and neurological outcomes of patients following treatment in a retrospective series at a single UK neurosurgical centre. Methodology: We analysed patients that had received a diagnosis of 'cerebral abscess' or 'subdural empyema' between June 2002 and June 2018. This was done in the form of a retrospective review. The search resulted in a total of 180 patients; with 37 patients being excluded (spinal abscess, below 18 or non-abscess related admissions). Data were collected from medical case notes including information about demographics, comorbidities, immunosuppression, presentation, size/location of lesions, pathogens, treatment, and outcomes. Results: In total, we analysed 143 patients between the ages of 18-90. Focal neurological deficit and headaches were seen in 84% and 68% of patients respectively. 108 positive brain cultures were seen; with the largest proportion, 59.2% being gram-positive cocci, with strep intermedius being the most common pathogen identified in 13.9% of patients. Of the patients with positive blood cultures (n=11), 72.7% showed the same organism both in the blood and on the brain cultures. Long term outcomes (n=72) revealed that 48% of patients seizure-free without requiring anti-epileptics, 51.3% of patients had full recovery of their neurological symptoms. There was a mortality rate of 13.9% in the series. Conclusion: In conclusion, the largest bacterial cause of abscess within our population was due to gram-positive cocci. The majority of the patient demonstrated full neurological recovery with close to half of patients not requiring anti-epileptics following discharge.Keywords: bacteria, cerebral abscess, long term outcome, neurological deficit
Procedia PDF Downloads 1197745 Mixed-Methods Analyses of Subjective Strategies of Most Unlikely but Successful Transitions from Social Benefits to Work
Authors: Hirseland Andreas, Kerschbaumer Lukas
Abstract:
In the case of Germany, there are about one million long-term unemployed – a figure that did not vary much during the past years. These long-term unemployed did not benefit from the prospering labor market while most short-term unemployed did. Instead, they are continuously dependent on welfare and sometimes precarious short-term employment, experiencing work poverty. Long-term unemployment thus turns into a main obstacle to become employed again, especially if it is accompanied by other impediments such as low-level education (school/vocational), poor health (especially chronical illness), advanced age (older than fifty), immigrant status, motherhood or engagement in care for other relatives. As can be shown by this current research project, in these cases the chance to regain employment decreases to near nil. Almost two-thirds of all welfare recipients have multiple impediments which hinder a successful transition from welfare back to sustainable and sufficient employment. Prospective employers are unlikely to hire long-term unemployed with additional impediments because they evaluate potential employees on their negative signaling (e.g. low-level education) and the implicit assumption of unproductiveness (e.g. poor health, age). Some findings of the panel survey “Labor market and social security” (PASS) carried out by the Institute of Employment Research (the research institute of the German Federal Labor Agency) spread a ray of hope, showing that unlikely does not necessarily mean impossible. The presentation reports on current research on these very scarce “success stories” of unlikely transitions from long-term unemployment to work and how these cases were able to perform this switch against all odds. The study is based on a mixed-method design. Within the panel survey (~15,000 respondents in ~10,000 households), only 66 cases of such unlikely transitions were observed. These cases have been explored by qualitative inquiry – in depth-interviews and qualitative network techniques. There is strong evidence that sustainable transitions are influenced by certain biographical resources like habits of network use, a set of informal skills and particularly a resilient way of dealing with obstacles, combined with contextual factors rather than by job-placement procedures promoted by Job-Centers according to activation rules or by following formal paths of application. On the employer’s side small and medium-sized enterprises are often found to give job opportunities to a wider variety of applicants, often based on a slow but steadily increasing relationship leading to employment. According to these results it is possible to show and discuss some limitations of (German) activation policies targeting the labor market and their impact on welfare dependency and long-term unemployment. Based on these findings, indications for more supportive small-scale measures in the field of labor-market policies are suggested to help long-term unemployed with multiple impediments to overcome their situation (e.g. organizing small-scale-structures and low-threshold services to encounter possible employers on a more informal basis like “meet and greet”).Keywords: against-all-odds, mixed-methods, Welfare State, long-term unemployment
Procedia PDF Downloads 3627744 Bone Mineral Density in Long-Living Patients with Coronary Artery Disease
Authors: Svetlana V. Topolyanskaya, Tatyana A. Eliseeva, Olga N. Vakulenko, Leonid I. Dvoretski
Abstract:
Introduction: Limited data are available on osteoporosis in centenarians. Therefore, we evaluated bone mineral density in long-living patients with coronary artery disease (CAD). Methods: 202 patients hospitalized with CAD were enrolled in this cross-sectional study. The patients' age ranged from 90 to 101 years. The majority of study participants (64.4%) were women. The main exclusion criteria were any disease or medication that can lead to secondary osteoporosis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results: Normal lumbar spine BMD was observed in 40.9%, osteoporosis – in 26.9%, osteopenia – in 32.2% of patients. Normal proximal femur BMD values were observed in 21.3%, osteoporosis – in 39.9%, and osteopenia – in 38.8% of patients. Normal femoral neck BMD was registered only in 10.4% of patients, osteoporosis was observed in 60.4%, osteopenia in 29.2%. Significant positive correlation was found between all BMD values and body mass index of patients (p < 0.001). Positive correlation was registered between BMD values and serum uric acid (p=0.0005). The likelihood of normal BMD values with hyperuricemia increased 3.8 times, compared to patients with normal uric acid, who often have osteoporosis (Odds Ratio=3.84; p = 0.009). Positive correlation was registered between all BMD values and body mass index (p < 0.001). Positive correlation between triglycerides levels and T-score (p=0.02), but negative correlation between BMD and HDL-cholesterol (p=0.02) were revealed. Negative correlation between frailty severity and BMD values (p=0.01) was found. Positive correlation between BMD values and functional abilities of patients assessed using Barthel index (r=0,44; p=0,000002) and IADL scale (r=0,36; p=0,00008) was registered. Fractures in history were observed in 27.6% of patients. Conclusions: The study results indicate some features of BMD in long-livers. In the study group, significant relationships were found between bone mineral density on the one hand, and patients' functional abilities on the other. It is advisable to further study the state of bone tissue in long-livers involving a large sample of patients.Keywords: osteoporosis, bone mineral density, centenarians, coronary artery disease
Procedia PDF Downloads 1447743 Online Social Network Vital to Hospitality and Tourism Marketing and Management
Authors: Nureni Asafe Yekini, Olawale Nasiru Lawal, Bola Dada, Gabriel Adeyemi Okunlola
Abstract:
This study is focused on the strengths and challenges associated with using the online social network as a rapidly evolving medium in marketing tourism services and businesses among the youths in Nigeria. The paper examines the Nigerian tourists’ attitude, mainly towards three aspects: application of Internet for travel and tourism; usage of online social networks in sharing travel and tourism experiences; and trust in electronic-media for marketing tourism businesses and services. The aim of this research is to determine the level of application of internet tools in marketing tourism businesses and services in Nigeria. This study reports an empirical analysis based on data obtained from a survey among 1004 Nigerian tourists. The outcome confirms the research hypothesis and points to crucial importance of introducing online social network site for marketing tourism businesses and services in Nigeria, and increasing the awareness for Nigeria as a tourist destination. Moreover, the paper strongly recommends the use of online social network as a tool for marketing tourism businesses and services, and the need for identifying effective framework for application of ICT tools in marketing tourism businesses and services in Nigeria at large.Keywords: tourism business, internet, online social networks, tourism services, ICT
Procedia PDF Downloads 3567742 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 175