Search results for: soft tissue hypertrophy
2280 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems
Authors: Nabil A. Ahmed
Abstract:
DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses
Procedia PDF Downloads 3102279 Low Cost Technique for Measuring Luminance in Biological Systems
Abstract:
In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.Keywords: tissue phantoms, scattering coefficient, albedo, low-cost method
Procedia PDF Downloads 2712278 Soft Infrastructure in Tourism Development
Authors: Seetanah Boopen, Padachi Kesseven, R. Juwaheer , R. V. Sannassee, M. L. Lamport
Abstract:
This study aims primarily at investigating the importance of soft infrastructure in tourism development for the case of an island economy namely Mauritius. The study in the first place assesses the level of perceived and actual satisfaction of the present state of the different types of soft tourism infrastructure and the allied services provided by tourism stakeholders in Mauritius and address the identified gaps. In order to address the study objectives, a rigorous survey analysis among 1741 international tourists at the departure lounge of the Sir Seewoosagur International Airport of Mauritius was carried out. The respondents placed significant emphasis on the different elements of the soft infrastructure dimension, where many of the elements falling under this dimension were rated with a high mean score. In particular the visitors rated communication, both internet and telephone services, and security to be most important. Significant gap has been found in the categories of ‘Health’ and ‘Security’. This indicates that the tourists ascribe high importance to the soft infrastructure dimension. The link between the respondent profile and the key variables which influence the tourist choice of the island as a destination are found to be equally important for most of the international tourists. However, these were deemed to be more critical for tourists travelling with family members. Although the survey instrument attempted to measure any gap between on the one hand, the importance of the infrastructure dimension and on the other hand, the level of satisfaction with the infrastructure dimension, overall the results do not show any statistically significant gap among the different elements of the infrastructural dimension. The study dwells into further analysis by engaging into an econometric framework related to a Probit Model, using the data collected, to gauge the effect of soft infrastructure on tourist intention to repeat or recommend the destination. The results confirm that soft infrastructure is found to be sensible to tourists, although relatively less sensitive as compared to tourism and transport and hotel infrastructure.Keywords: tourism development, soft infrastructure, Mauritius, hotel infrastructure
Procedia PDF Downloads 4872277 The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs
Authors: Shin-Yi Mao, Jiashing Yu
Abstract:
Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future.Keywords: adipose stem cells, decellularize adipose tissue, Alginate, microcarries
Procedia PDF Downloads 4442276 Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics
Authors: Momoh Omeiza Sheidu
Abstract:
Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study.Keywords: finite element, biomechanics, modeling, computational biomechanics
Procedia PDF Downloads 5032275 Levels of Toxic Metals in Different Tissues of Lethrinus miniatus Fish from Arabian Gulf
Authors: Muhammad Waqar Ashraf, Atiq A. Mian
Abstract:
In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Atomic Absorption Spectroscopy. Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus miniatus and consumption of organs should be avoided as much as possible.Keywords: lethrinus miniatus, arabian gulf, heavy metals, atomic absorption spectroscopy
Procedia PDF Downloads 3562274 Levels of Heavy Metals in Different Tissues of Lethrinus Miniatus Fish from Arabian Gulf
Authors: Muhammad Waqar Ashraf
Abstract:
In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus Miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS). Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found to be 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus Miniatus and consumption of organs should be avoided as much as possible.Keywords: Arabian gulf, Lethrinus miniatus, heavy metals, atomic absorption spectroscopy
Procedia PDF Downloads 2732273 Effect of Interaction between Different Concentrations of Colchicine, Time Duration and Two Verities of Crepis capillaris on Chromosome Polyploidy in vitro Culture
Authors: Mosleh M. S. Duhoky, Payman A. A. Zibari
Abstract:
These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture and Forestry/ University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between three different factors on percentage of polyploidy of Crepis capillaris by using Tissue culture technology. Concerning the data it is obvious that shaking of Crepis capillaris with 2B chromosome with 0.15 mM for ten days inscribed a high percentage of polyploidy within most fifteen passages.Keywords: crepis capillaris, 2B chromosome, tissue culture, polyploidy
Procedia PDF Downloads 3512272 The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties
Authors: Mohsen Ramezan Shirazi, Orod Zarrin, Komeil Valipourian
Abstract:
This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations.Keywords: bearing capacity, expansive clay, stone columns, vibro techniques
Procedia PDF Downloads 5852271 Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time
Authors: Minhyuk Heo, Jihwan Yun, Seonghun Park
Abstract:
It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized.Keywords: lumbar interspinous process fixation device, finite element method, lumbar spine, kinematics
Procedia PDF Downloads 2282270 Fragility Assessment for Vertically Irregular Buildings with Soft Storey
Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi
Abstract:
Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.Keywords: special steel moment frame, soft storey, incremental dynamic analysis, fragility curve
Procedia PDF Downloads 3492269 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications
Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar
Abstract:
Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications
Procedia PDF Downloads 2242268 Using Soft Systems Methodology in the Healthcare Industry of Mauritius
Authors: Arun Kumar, Neelesh Haulder
Abstract:
This paper identifies and resolves some key issues relating to a specific aspect within the supply chain logistics of the public health care industry in the Republic of Mauritius. The analysis and the proposed solution are performed using soft systems methodology (SSM). Through the application of this relevant systematic approach at problem solving, the aim is to obtain an in-depth analysis of the problem, incorporating every possible world view of the problem and consequently to obtain a well explored solution aimed at implementing relevant changes within the current supply chain logistics of the health care industry, with the purpose of tackling the key identified issues.Keywords: soft systems methodology, CATWOE, healthcare, logistics
Procedia PDF Downloads 5172267 Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material
Authors: Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim
Abstract:
Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration.Keywords: cell attachment, electrospinning, mechanical strength, melt-plotting
Procedia PDF Downloads 3172266 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column
Procedia PDF Downloads 1512265 Behavior of Common Wheat under the Influence of Treated Waste Water
Authors: Chiahi Nadia
Abstract:
The aim of our work is to monitor the behavior of soft wheat on a morpho-physiological and agronomic scale under the influence of treated wastewater. Physico-chemical analyses of the treated sewage were also carried out, and our tests were carried out on two varieties of common wheat (Triticum aestivum L), HD1220 and ARZ. For this, a seedling was made, and two different irrigations were chosen, one using treated wastewater from the Sedrata (Wilaya of Souk ahras - Algeria) WWTP and the other stormwater as a control. The tests focused on soil and soft wheat parameters, and based on our results, the soft wheat development, physiological and yield parameters appear to respond favorably to the use of these waters.Keywords: common wheat (Triticum aestivum L.), purified wastewater, irrigation, morph physiological and agronomic parameters
Procedia PDF Downloads 672264 Computation of Residual Stresses in Human Face Due to Growth
Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan
Abstract:
Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.Keywords: growth, soft tissue, residual stress, finite element method
Procedia PDF Downloads 3542263 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)
Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz
Abstract:
Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites
Procedia PDF Downloads 3482262 Spatial Distribution of Cellular Water in Pear Fruit: An Experimental Investigation
Authors: Md. Imran H. Khan, T. Farrell, M. A. Karim
Abstract:
Highly porous and hygroscopic characteristics of pear make it complex to understand the cellular level water distribution. In pear tissue, water is mainly distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. Understanding of these three types of water in pear tissue is crucial for predicting actual heat and mass transfer during drying. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the pear tissue. During this study, Green Anjou Pear was taken for the investigation. The experiment was performed using 1H-NMR- T2 relaxometry. Various types of water component were calculated by using multi-component fits of the T2 relaxation curves. The experimental result showed that in pear tissue 78-82% water exist in intracellular space; 12-16% water in intercellular space and only 2-4% water exist in the cell wall space. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. It was also investigated that the physical properties of pear and the proportion of the different types of water has a strong relationship. Cell wall water depends on the proportion of solid in the sample tissue whereas free water depends on the porosity of the material.Keywords: intracellular water, intercellular water, cell wall water, physical property, pear
Procedia PDF Downloads 2532261 Field Tests and Numerical Simulation of Tunis Soft Soil Improvement Using Prefabricated Vertical Drains
Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha
Abstract:
This paper presents a case study of “Radès la Goulette” bridge project using the technique of prefabricated vertical drains (PVD) associated with step by step construction of preloading embankments with averaged height of about 6 m. These embankments are founded on a highly compressible layer of Tunis soft soil. The construction steps included extensive soil instrumentation such as piezometers and settlement plates for monitoring the dissipation of excess pore water pressures and settlement during the consolidation of Tunis soft soil. An axisymmetric numerical model using the 2D finite difference code FLAC was developed and calibrated using laboratory tests to predict the soil behavior and consolidation settlements. The constitutive model impact for simulating the soft soil behavior is investigated. The results of analyses show that numerical analysis provided satisfactory predictions for the field performance during the construction of Radès la Goulette embankment. The obtained results show the effectiveness of PVD in the acceleration of the consolidation time. A comparison of numerical results with theoretical analysis was presented.Keywords: tunis soft soil, radès bridge project, prefabricated vertical drains, FLAC, acceleration of consolidation
Procedia PDF Downloads 1232260 mRNA Biomarkers of Mechanical Asphyxia-Induced Death in Cardiac Tissue
Authors: Yan Zeng, Li Tao, Liujun Han, Tianye Zhang, Yongan Yu, Kaijun Ma, Long Chen
Abstract:
Mechanical asphyxia is one of the main cause of death; however, death by mechanical asphyxia may be difficult to prove in court, particularly in cases in which corpses exhibit no obvious signs of asphyxia. To identify a credible biomarker of asphyxia, we first examined the expression levels of all the mRNAs in human cardiac tissue specimens subjected to mechanical asphyxia and compared these expression levels with those of the corresponding mRNAs in specimens subjected to craniocerebral injury. A total of 119 differentially expressed mRNAs were selected and the expression levels of these mRNAs were examined in 44 human cardiac tissue specimens subjected to mechanical asphyxia, craniocerebral injury, hemorrhagic shock and other causes of death. We found that DUSP1 and KCNJ2 were up-regulated in tissue specimens of mechanical asphyxia compared with control tissues, with no significant correlation between age, environmental temperature and PMI, indicating that DUSP1 and KCNJ2 may associate with mechanical asphyxia-induced death and can thus serve as useful biomarkers of death by mechanical asphyxia.Keywords: mechanical asphyxia, biomarkers, DUSP1, KCNJ2, cardiac tissue
Procedia PDF Downloads 2952259 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1102258 Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages
Authors: Sunil Dehipawala, Aregama Sirisumana, stephan Smith, P. Schneider, G. Tremberger Jr, D. Lieberman, Todd Holden, T. Cheung
Abstract:
The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil.Keywords: EXAFS, fourier transform, metalloproteins, XANES
Procedia PDF Downloads 3282257 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 1532256 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering
Authors: Dong Nyoung Heo, Il Keun Kwon
Abstract:
Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing
Procedia PDF Downloads 1142255 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications
Authors: Ibtisam A. Abbas Al-Darkazly
Abstract:
In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering
Procedia PDF Downloads 1112254 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 4662253 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History
Authors: Joel M. De La Rosa R.
Abstract:
In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.Keywords: vertical shaft, flotation method, very soft clays, construction supervision
Procedia PDF Downloads 1892252 Effect of Different Ozone Doses on Antioxidant Activity in Different Tomato Tissues and at Different Stages of Ripening
Authors: Shalluf Milad
Abstract:
Tomatoes are widely produced and consumed due to their nutritional content and versatility. However, the tomato is a soft fruit liable to damage and flavour deterioration. Hence, the main challenge for the tomato producing industry is to prevent the high loss incurred during harvest, handling and transportation of the crops. The objective of this study was to investigate the overall nutritional implication of controlled storage of tomatoes using ozone on the basic nutritional components of tomatoes. This investigation was also designed to focus on the effect of different ozone doses on the basic components (antioxidant activity). Green, yellow and red stages of ripeness (elegance tomatoes), were harvested at different dates for each experiment. The tomatoes were cleaned and placed inside the glass reactors and ozonated at 0.25, 0.50 and 1 mg O3/g tomatoes and clean air respectively for 5 days at 15°C ± 2 and 90-95 % relative humidity respectively. The fruits were analysed for total antioxidant activity. Analysis of the fruits clearly showed that antioxidant activity in the pericarp tissue was the lowest (P<0.001) compared with the pulp tissue of tomatoes during storage in the red stage of maturity, after being treated with ozone in the atmosphere of storage in a dose of 1.00 mgO3/g tomatoes. It can be concluded from this study that the use of ozone in the atmospheres of storage and handling of fresh products maintains the important compounds of these products while maintaining the nutritional value and health quality.Keywords: post-harvest treatment, controlled atmosphere storage, ozone, tomatoes, antioxidant activity
Procedia PDF Downloads 3272251 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment
Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika
Abstract:
On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.Keywords: differential settlement, embankment, influence area, slope, soft soil
Procedia PDF Downloads 408