Search results for: neural style transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5358

Search results for: neural style transfer

5208 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 396
5207 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 245
5206 Patent License of Transfer Technology: Challenges and Opportunities in Indonesia

Authors: Agung Sujatmiko

Abstract:

One of the purposes of patent licensing was to transfer technology from developed countries to developing countries. For this reason, the role of the patent license agreement was very important and had a function as a tool to achieve technological development. This goal was very good, but in fact, many problems and obstacles arose in its implementation, so the technology transfer that had been implemented had not given good results. For this reason, it was necessary to find a solution so that technology could switch properly. The problem approach used the statutory and conceptual approaches. The analysis used was deductive by analyzing general laws and regulations and then concluding. Several regulations related to technology transfer were the main source to find answers to why technology transfer was difficult to achieve and what caused it. Once the cause was known, a solution would be sought.

Keywords: license, patent, technology, tie in clause

Procedia PDF Downloads 95
5205 The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities

Authors: Im-Nam Jang, Yong-Sik Ahn

Abstract:

In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance.

Keywords: heat pipe, heat transfer performance, effective pore size, capillary force, sintered wick

Procedia PDF Downloads 64
5204 Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance

Authors: Seongryong Kang, Woonjin Kim, Sungjoo Lee

Abstract:

Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer.

Keywords: diversity, intensity, international technology acquisition, performance, technology transfer

Procedia PDF Downloads 361
5203 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 130
5202 The Significance of Ernest Hemingway's Writing Style in the Development of Georgian Prose of 1950-1960s

Authors: Natia Kvachakidze

Abstract:

The given research aims to study and analyze the influence of Ernest Hemingway’s writing style on Georgian prose of 1950s and 1960s. It is universally known that Ernest Hemingway’s unique writing style has had an enormous effect on various writers. His work remains highly relevant and influential even today. This is especially true about the works written in English, but literary prose created in other languages is not an exception. Certain stylistic peculiarities characteristic for Hemingway’s writing can be traced in literary works written in various languages. It is particularly interesting for us, Georgians, how all these aspects were reflected in Georgian prose of the second-half of XX century. This particular paper (which is a part of a larger research) focuses on major significant peculiarities of Georgian prose of 1950-1960s that might be connected to Hemingway's writing. In this respect, GuramRcheulishvili’s (1934-1960) works should be particularly distinguished (especially his short fiction), but literary works of other Georgian authors are not at all less important. The research involves the analysis of the prose works of some Georgian writers of the given period in the context of tracing similarities and parallels between them and the characteristic features of Ernest Hemingway’s writing style. The use of everyday language as well as short and simple sentences, a concise and sparse style, repetitions, intense dialogues are some of the essential traits in question. Themes like birth and death, war and violence, family, nature, disillusionment also prove to be vitally important for this research. Complex interconnections between the author, the narrator, and the protagonist (often autobiographical) provide another interesting subject to study. At the same time, this paper aims at studying and revealing how Hemingway’s method was reflected and transformed in Georgian prose. In this respect, it is interesting to trace not only the direct effect of Hemingway’s style but also the role of certain Georgian translations of the works of this American writer.

Keywords: hemingway, prose, georgian writers, writing style

Procedia PDF Downloads 179
5201 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System

Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov

Abstract:

Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.

Keywords: modeling, errors, probability, biometrics, neural network, authentication

Procedia PDF Downloads 482
5200 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 352
5199 Navigating the Case-Based Learning Multimodal Learning Environment: A Qualitative Study Across the First-Year Medical Students

Authors: Bhavani Veasuvalingam

Abstract:

Case-based learning (CBL) is a popular instructional method aimed to bridge theory to clinical practice. This study aims to explore CBL mixed modality curriculum in influencing students’ learning styles and strategies that support learning. An explanatory sequential mixed method study was employed with initial phase, 44-itemed Felderman’s Index of Learning Style (ILS) questionnaire employed across year one medical students (n=142) using convenience sampling to describe the preferred learning styles. The qualitative phase utilised three focus group discussions (FGD) to explore in depth on the multimodal learning style exhibited by the students. Most students preferred combination of learning stylesthat is reflective, sensing, visual and sequential i.e.: RSVISeq style (24.64%) from the ILS analysis. The frequency of learning preference from processing to understanding were well balanced, with sequential-global domain (66.2%); sensing-intuitive (59.86%), active- reflective (57%), and visual-verbal (51.41%). The qualitative data reported three major themes, namely Theme 1: CBL mixed modalities navigates learners’ learning style; Theme 2: Multimodal learners active learning strategies supports learning. Theme 3: CBL modalities facilitating theory into clinical knowledge. Both quantitative and qualitative study strongly reports the multimodal learning style of the year one medical students. Medical students utilise multimodal learning styles to attain the clinical knowledge when learning with CBL mixed modalities. Educators’ awareness of the multimodal learning style is crucial in delivering the CBL mixed modalities effectively, considering strategic pedagogical support students to engage and learn CBL in bridging the theoretical knowledge into clinical practice.

Keywords: case-based learning, learnign style, medical students, learning

Procedia PDF Downloads 95
5198 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk

Procedia PDF Downloads 341
5197 The Effect of The Speaker's Speaking Style as A Factor of Understanding and Comfort of The Listener

Authors: Made Rahayu Putri Saron, Mochamad Nizar Palefi Ma’ady

Abstract:

Communication skills are important in everyday life, communication can be done verbally in the form of oral or written and nonverbal in the form of expressions or body movements. Good communication should be able to provide information clearly, and there is feedback from the speaker and listener. However, it is often found that the information conveyed is not clear, and there is no feedback from the listeners, so it cannot be ensured that the communication is effective and understandable. The speaker's understanding of the topic is one of the supporting factors for the listener to be able to accept the meaning of the conversation. However, based on the results of the literature review, it found that the influence factors of person speaking style are as follows: (i) environmental conditions; (ii) voice, articulation, and accent; (iii) gender; (iv) personality; (v) speech disorders (Dysarthria); when speaking also have an important influence on speaker’s speaking style. It can be concluded the factors that support understanding and comfort of the listener are dependent on the nature of the speaker (environmental conditions, voice, gender, personality) or also it the speaker have speech disorders.

Keywords: listener, public speaking, speaking style, understanding, and comfortable factor

Procedia PDF Downloads 166
5196 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 585
5195 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 325
5194 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings

Authors: Sorin Valcan, Mihail Gaianu

Abstract:

Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.

Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks

Procedia PDF Downloads 117
5193 Comparison of Particle Size for ɑ(Alpha) Fe2O3 and ɤ(Gamma)Fe2O3 on Heat Transfer Performance in an Copper Oscillating Heat Pipe

Authors: Hamid Reza Goshayeshi

Abstract:

The effect of ɑ(alpha) Fe2O3 and ɤ(gamma)Fe2O3 particles on the heat transfer performance of an oscillating heat pipe was investigated experimentally. Kerosene was used as the base fluid for the OHP. Six size particles with average diameters of 10 nm, 20 nm, and 30 nm ɑFe2O3 and ɤFe2O3 were investigated, respectively. Experimental results show that the ɤFe2O3 particles added in the OHP significantly affect the heat transfer performance. When the OHP was charged with kerosene and 20 nm ɤ Fe2O3 particles, the OHP can achieve the best heat transfer performance among six particles investigated in this research.

Keywords: copper oscillating heat pipe, heat transfer, flow, comparison of ɑ(alpha)Fe2O3 and ɤ(gamma)Fe2O3, increase heat transfer

Procedia PDF Downloads 318
5192 Language Use in Autobiographical Memory Transcripts as a Window into Attachment Style and Personality

Authors: McKenzie S. Braley, Lesley Jessiman

Abstract:

If language reveals internal psychological processing, then it is also likely that language use in autobiographical memory transcripts may be used as a window into attachment style and related personality features. The current study, therefore, examined the possible associations between attachment style, negative affectivity, social inhibition, and linguistic features extracted from autobiographical memory transcripts. Young adult participants (n = 61) filled out attachment and personality questionnaires, and orally reported a relationship-related memory. Memories were audio-recorded and later transcribed verbatim. Using a computerized linguistic extraction tool, positive affect words, negative affect words, and cognition words were extracted. Spearman’s rank correlation coefficients revealed that attachment anxiety was negatively correlated with cognition words (r2 = -0.26, p = 0.047) and that negative affectivity was negatively correlated with positive affect words (r2 = -0.32, p = 0.012). The findings suggest that attachment style and personality are associated with speech styles indicative of both emotionality and depth of processing. Because attachment styles, negative affectivity, and social inhibition are associated with poor mental health outcomes, analyses of key linguistics features in autobiographical memory narratives may provide reliable screening tools for mental wellbeing.

Keywords: attachment style, autobiographical memory, language, negative affectivity, social inhibition

Procedia PDF Downloads 271
5191 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 415
5190 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 371
5189 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 177
5188 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: gas turbine, blade tip, heat transfer, unsteady wakes

Procedia PDF Downloads 373
5187 Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids

Authors: Lee Derk Huan, Nur Irmawati

Abstract:

This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: numerical investigation, spray cooling, heat transfer, nanofluids

Procedia PDF Downloads 465
5186 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 460
5185 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 310
5184 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
5183 Leadership Style and Organizational Culture on Unethical Work Behaviour among Employees

Authors: Ojo Adeshina Akinwumi

Abstract:

This study investigated leadership style and organizational culture as predictors of unethical work behaviour among employees in corporate organizations. This study adopted an expo facto research design. Two Hundred and Seventy-Four (274) employees (149 males, 125 females) sampled from the organization participated in the study. Their ages ranged from 19 to 65, with a mean of 36.36 years and a standard deviation of 10.43. Unethical Work Behaviour was measured using Unethical Work Behaviour Scale (UWBC), Organizational Culture was measured using Organizational Culture Scale, (and OCS and Leadership Styles were measured using Multifactor Leadership Questionnaire (LSMLQ). Two hypotheses were formulated and tested using Pearson Product Moment Correlation and Multiple Regressions Analysis. Results indicated that leadership styles had no significant relationship with unethical work behaviour (r(274)=.09;>0.05). However, organizational culture had a significant relationship with unethical work behaviour (r(274)=.15;p,0.05). Lastly, leadership style and organizational culture jointly predicted unethical work behaviour among employees. [F (2, 273) =3.65, p<0.05). Findings from this study were discussed in line with existing literature. It was also recommended that leadership styles and organizational culture should be improved upon in order to reduce unethical work behaviour by employees.

Keywords: leadership style, organizational culture, unethical work behavior, employees in corporate organisations in Nigeria

Procedia PDF Downloads 111
5182 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 140
5181 Steady Conjugate Heat Transfer of Two Connected Thermal Systems

Authors: Mohamed El-Sayed Mosaad

Abstract:

An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.

Keywords: conjugate heat transfer, boundary layer, convection, thermal systems

Procedia PDF Downloads 379
5180 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
5179 Assessment of Academic Knowledge Transfer Channels in Field of Environment

Authors: Jagul Huma Lashari, Arabella Bhutto

Abstract:

Last few years have shown increased an interest of researchers in knowledge and technology transfer. However, facts show fewer types of knowledge transfer practices in the developing countries. This article focuses on assessment transfer channels of academic research produced by highly qualified academicians working in universities in Sindh offering degrees in field of an Environment in Sindh Pakistan. The academic field has been chosen because in field of the environment there is alarming need of research into practice for sustainable development. Using case study approach; in this research qualitative interviews have been conducted from PhD faculty members working in the universities offering degrees in field of environment. Obtained data is analyzed using descriptive statistics and chi-square test with the help of statistical packages for social sciences (SPSS). Research explored 31 channels of academic knowledge transfer from detailed review of literature and exploratory interviews with participants. Identified knowledge transfer channels have been grouped together in 6 groups of knowledge transfer channels; As knowledge transfer through publications, networking, mobility of researchers, joint research, intellectual property and co-operations. Results revealed that academic knowledge have been transferred through publications, networking, and co-operation. However, less number of academic knowledge has been transferred through groups of knowledge transfer channels such as Intellectual Property and joint research.

Keywords: environment, research knowledge, transfer channels, universities

Procedia PDF Downloads 336