Search results for: molecular profiles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3223

Search results for: molecular profiles

3073 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 308
3072 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria

Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata

Abstract:

Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.

Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity

Procedia PDF Downloads 160
3071 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery

Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim

Abstract:

Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).

Keywords: butylglycerols, dextran, nanoparticles, transdermal

Procedia PDF Downloads 123
3070 Electrospray Deposition Technique of Dye Molecules in the Vacuum

Authors: Nouf Alharbi

Abstract:

The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.

Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION

Procedia PDF Downloads 133
3069 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe

Authors: Gerardo Arias, Richard Wall, Jamie Stevens

Abstract:

Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.

Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism

Procedia PDF Downloads 242
3068 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 112
3067 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D

Procedia PDF Downloads 301
3066 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives

Authors: Z. Bayat

Abstract:

A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.

Keywords: DFT, adamantane, QSAR, Kovat

Procedia PDF Downloads 366
3065 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi

Abstract:

TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 521
3064 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 341
3063 Diversification of Productivity of the Oxfordian Subtidal Carbonate Factory in the Holy Cross Mountains

Authors: Radoslaw Lukasz Staniszewski

Abstract:

The aim of the research was to verify lateral extent and thickness variability of individual limestone layers within early-Jurassic medium- and thick-bedded limestone interbedded with marlstones. Location: The main research area is located in the south-central part of Poland in the south-western part of Permo-Mesozoic margin of the Holy Cross Mountains. It includes outcroppings located on the line between Mieczyn and Wola Morawicka. The analyses were carried out on six profiles (Mieczyn, Gniezdziska, Tokarnia, Wola Morawicka, Morawica and Wolica) representing three early-Jurassic links: Jasna Gora layers, grey limestone, Morawica limestone. Additionally, an attempt was made to correlate the thickness sequence from the Holy Cross Mountains to the profile from the quarry in Zawodzie located 3 km east of Czestochowa. The distance between the outermost profiles is 122 km in a straight line. Methodology of research: The Callovian-Oxfordian border was taken as the reference point during the correlation. At the same time, ammonite-based stratigraphic studies were carried out, which allowed to identify individual packages in the remote outcroppings. The analysis of data collected during fieldwork was mainly devoted to the correlation of thickness sequences of limestone layers in subsequent profiles. In order to check the objectivity of the subsequent outcroppings, the profiles have been presented in the form of the thickness functions of the subsequent layers. The generated functions were auto-correlated, and the Pearson correlation coefficient was calculated. The next step in the research was to statistically determine the percentage increment of the individual layers thickness in the subsequent profiles, and on this basis to plot the function of relative carbonate productivity. Results: The result of the above-mentioned procedures consists in illustrating the extent of 34 rock layers across the examined area in demonstrating the repeatability of their success in subsequent outcroppings. It can also be observed that the thickness of individual layers in the Holy Cross Mountains is increasing from north-west towards south-east. Despite changes in the thickness of the layers in the profiles, their relations within the sequence remain constant. The lowest matching ratio of thickness sequence calculated using the Pearson correlation coefficient formula is 0.67, while the highest is 0.84. The thickness of individual layers changes between 4% and 230% over the examined area. Interpretation: Layers in the outcroppings covered by the research show continuity throughout the examined area and it is possible to precisely correlate them, which means that the process determining the formation of the layers was regional and probably included both the fringe of the Holy Cross Mountains and the north-eastern part of the Krakow-Czestochowa Jura Upland. Local changes in the sedimentation environment affecting the productivity of the subtidal carbonate factory only cause the thickness of the layers to change without altering the thickness proportions of the profiles. Based on the percentage of changes in the thickness of individual layers in the subsequent profiles, it can be concluded that the local productivity of the subtidal carbonate factory is increasing logarithmically.

Keywords: Oxfordian, Holy Cross Mountains, carbonate factory, Limestone

Procedia PDF Downloads 116
3062 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories

Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos

Abstract:

Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.

Keywords: database, forensic genetics, genetic analysis, sample management, software solution

Procedia PDF Downloads 370
3061 Acidity and Aridity: Soil Carbon Storage and Myeloablation

Authors: Tom Spears, Zotique Laframboise

Abstract:

Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none.

Keywords: soil, carbon storage, acidity, soil inorganic carbon (SIC)

Procedia PDF Downloads 490
3060 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
3059 Mechanism of Melanin Inhibition of Morello Flavone- 7″- Sulphate and Sargaol extracts from Garcinia livingstonei (Clusiaceae): Homology Modelling, Molecular Docking, and Molecular Dynamics Simulations

Authors: Ncoza Dlova, Tivani Mashamba-Thompson

Abstract:

Garcinia livingstonei (Clusiaceae) extracts, morelloflavone- 7″- sulphate and sargaol were shown to be effective against hyper-pigmentation through inhibition of tyrosinase enzyme, in vitro . The aim of this study is to elucidate the structural mechanism through which morelloflavone- 7″- sulphate and sargaol binds human tyrosinase. Implementing a homology model to construct a tyrosinase model using the crystal structure of a functional unit from Octopus hemocyanin (PDB: 1JS8) as a reference template enabled us to create a human tyrosinase model. Molecular dynamics and binding free energy calculations were optimized to enable molecular dynamics simulation of the copper dependent inhibitors. Results show the importance of the hydrogen bond formation morelloflavone- 7″- sulphate and sargaol between compound and active site residues. Both complexes demonstrated the metallic coordination between compound and arginine residue as well as copper ions within the active site. The comprehensive molecular insight gained from this study should be vital in understanding the binding mechanism morelloflavone- 7″- sulphate and sargaol. Moreover, these results will assist in the design of novel of metal ion dependent enzyme inhibitors as potential anti-hyper-pigmentation disorder therapies.

Keywords: hyper-pigmentation disorders, dyschromia African skin, morelloflavone- 7″- sulphate, sagoal

Procedia PDF Downloads 406
3058 Towards Designing of a Potential New HIV-1 Protease Inhibitor Using Quantitative Structure-Activity Relationship Study in Combination with Molecular Docking and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Hatim Soufi, Sanchaita RajkhowaI, Ashwani Sharma, Subrata Sinha, Said Belaaouad

Abstract:

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model’s applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski’s rule. Molecular Docking performed on Wild Type and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes’ stability, allowing a comparative study of the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of Darunavir and may be used for further experimental studies. Our study may also be used as a pipeline to search and design new potential inhibitors of HIV-1 proteases.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation.

Procedia PDF Downloads 39
3057 DNA and DNA-Complexes Modified with Electromagnetic Radiation

Authors: Ewelina Nowak, Anna Wisla-Swider, Krzysztof Danel

Abstract:

Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains.

Keywords: biopolymers, deoxyribonucleic acid, ionic liquids, linearly polarized visible light, ultraviolet

Procedia PDF Downloads 210
3056 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept

Authors: F. S. Irwansyah, I. Farida, Y. Maulana

Abstract:

Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.

Keywords: android, augmented reality, chemical learning, geometry

Procedia PDF Downloads 206
3055 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals

Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar

Abstract:

The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.

Keywords: inorganic molecular crystals, density functional theory, cages, interactions

Procedia PDF Downloads 93
3054 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146
3053 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration

Authors: Jungkyun Im

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.

Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis

Procedia PDF Downloads 231
3052 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study

Authors: Tsu-Hsu Yen

Abstract:

The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.

Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability

Procedia PDF Downloads 115
3051 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 374
3050 Hydrothermal Synthesis of Octahedral Molecular Sieve from Mn Oxide Residues

Authors: Irlana C. do Mar, Thayna A. Ferreira, Dayane S. Rezende, Bruno A. M. Figueira, José M. R. Mercury

Abstract:

This work presents a low-cost Mn starting material to synthesis manganese oxide octahedral molecular sieve with Mg²⁺ in the tunnel (Mg-OMS-1), based on the Mn residues from Carajás Mineral Province (Amazon, Brazil). After hydrothermal and cation exchange procedures, the Mn residues transformed to a single phase, Mg-OMS-1. The raw material and the synthesis processes were analyzed by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectroscopy (FTIR). The tunnel structure was synthesized hydrothermally at 180 °C for three days without impurities. According to the XRD analysis, the formation of crystalline Mg-OMS-1 was identified through reflections at 9.8º, 12º and 18º (2θ), as well as a thermal stability around 300 ºC. The SEM analysis indicated that the final product presents good crystallinity with a homogeneous size. In addition, an intense and diagnostic FTIR band was identified at 515 cm⁻¹ related to the MnO₆ octahedral stretching vibrations.

Keywords: Mn residues , Octahedral Molecular Sieve, Synthesis, Characterization

Procedia PDF Downloads 192
3049 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology

Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez

Abstract:

Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.

Keywords: green chemistry, QSAR, molecular topology, biopesticide

Procedia PDF Downloads 314
3048 The Collapse of a Crane on Site: A Case Study

Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia

Abstract:

This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.

Keywords: failure, metals, weld, microstructure

Procedia PDF Downloads 126
3047 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 489
3046 Morphological and Molecular Studies (ITS1) of Hydatid Cysts in Slaughtered Sheep in Mashhad Area

Authors: G. R. Hashemi Tabar, G. R. Razmi, F. Mirshekar

Abstract:

Echinococcus granulosus have ten strains from G1 to G9. Each strain is related to special intermediated host. The morphology, epidemiology, treatment and control in these strains are different. There are many morphological and molecular methods to differentiate of Echinococcus strains. However, using both methods were provided better information about identification of each strain. The aim of study was to identify Echinococcus granulosus strain of hydrated cysts in slaughtered sheep using morphological and molecular methods in Mashhad area. In the present study, the infected liver and lung with hydatid cysts were collected and transferred to laboratory. The hydatid cyst liquid was extracted and morphological characters of rostellar hook protosclocies were measured using micrometer ocular. The total length of large blade length of large hooks, total length of small and blade length of small hooks, and number of hooks per protoscolex were 23± 0.3μm, 11.7±0.5 μm, 19.3±1.1 μm,8±1.1 and 33.7±0.7 μm, respectively. In molecular section of the study, DNA each samples was extracted with MBST Kit and development of PCR using special primers (EgF, EgR) which amplify fragment of ITS1 gen. The PCR product was digested with Bsh1236I enzyme. Based on pattern of PCR-RLFP results (four band forming), G1, G2 and G3 strain of Echinococcus granulosus were obtained. Differentiation of three strains was done using sequencing analysis and G1 strain was diagnosed. The agreement between the molecular results with morphometric characters of rosetellar hook was confirmed the presence of G1 strain of Echinococcus in the slaughtered sheep of Mashhad area.

Keywords: Echinococcus granulosus, Hydatid cyst, PCR, sheep

Procedia PDF Downloads 518
3045 Role of Different Land Use Types on Ecosystem Services Provision in Moribane Forest Reserve - Mozambique

Authors: Francisco Domingos Francisco

Abstract:

Tropical forests are key providers of many Ecosystem Services (ES), contributing to human wellbeing on a global and local scale. Communities around and within Moribane Forest Reserve (MFR), Manica Province - Mozambique, benefit from ES through the exploitation of non-wood and wood forest products. The objective was to assess the provisioning capacity of the MFR in woody forest products in species and profiles of interest to local communities in the main sources of extraction. Social data relating to the basic needs of local communities for these products were captured through an exploratory study before this one. From that study, it became known about the most collected wood species, the sources of collection, and their availability in the profiles of greatest interest to them. A field survey through 39 rectangular 50mx20m plots was conducted with 13 plots established in each of the three land-use types (LUT), namely Restricted Forest, Unrestricted Forest, and Disturbed areas. The results show that 89 species were identified, of which 28 (31.4%) are assumed to be the most used by the communities. The number of species of local interest does not vary across the LUT (p>0.05). The most used species (MUS) is distributed in 82% in Restricted Forest, 75% in Unrestricted, and also 75% in Disturbed. Most individuals of both general and MUS found in Unrestricted Forest, and Degraded areas have lower end profiles (5-7 cm), representing 0.77 and 0.26%, respectively. The profile of individuals of species of local interest varies by LUT (p<0.05), and their greatest proportion (0.51%) outside the lower end is found in Restricted Forest. There were no similarities between the LUT for the species in general (JCI <0.5) but between the MUS (JCI >0.5). Conclusion, the areas authorized for the exploitation of wood forest products in the MFR tend to reduce their ability to provide local communities with forest products in species and profiles of their interest. This reduction item is a serious threat to the biodiversity of the Restricted Forest. The study can help the academic community in future studies by replicating the methodology used for monitoring purposes or conducting studies in other similar areas, and the results may support decision-makers in designing better strategies for sustainability.

Keywords: ecosystem services, land-use types, local communities, species profile, wellbeing, wood forest product

Procedia PDF Downloads 134
3044 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 524