Search results for: maximum deflection (D0)
4212 Behavior of the RC Slab Subjected to Impact Loading According to the DIF
Authors: Yong Jae Yu, Jae-Yeol Cho
Abstract:
In the design of structural concrete for impact loading, design or model codes often employ a dynamic increase factor (DIF) to impose dynamic effect on static response. Dynamic increase factors that are obtained from laboratory material test results and that are commonly given as a function of strain rate only are quite different from each other depending on the design concept of design codes like ACI 349M-06, fib Model Code 2010 and ACI 370R-14. Because the dynamic increase factors currently adopted in the codes are too simple and limited to consider a variety of strength of materials, their application in practical design is questionable. In this study, the dynamic increase factors used in the three codes were validated through the finite element analysis of reinforced concrete slab elements which were tested and reported by other researcher. The test was intended to simulate a wall element of the containment building in nuclear power plants that is assumed to be subject to impact scenario that the Pentagon experienced on September 11, 2001. The finite element analysis was performed using the ABAQAUS 6.10 and the plasticity models were employed for the concrete, reinforcement. The dynamic increase factors given in the three codes were applied to the stress-strain curves of the materials. To estimate the dynamic increase factors, strain rate was adopted as a parameter. Comparison of the test and analysis was done with regard to perforation depth, maximum deflection, and surface crack area of the slab. Consequently, it was found that DIF has so great an effect on the behavior of the reinforced concrete structures that selection of DIF should be very careful. The result implies that DIF should be provided in design codes in more delicate format considering various influence factors.Keywords: impact, strain rate, DIF, slab elements
Procedia PDF Downloads 2964211 Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon
Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Martin Búda
Abstract:
The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, the maximum gross weight of the train, the maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of the train consisting of a new type of wagons.Keywords: loading units, theoretical capacity model, train capacity, wagon for intermodal transport
Procedia PDF Downloads 4994210 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets
Authors: Sajjad Seifoori
Abstract:
Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).Keywords: impact, molecular dynamic, graphene, spring mass
Procedia PDF Downloads 3304209 Analysis of Economic Order Quantity, Safety Stock, Maximum Inventory Control, Lot Size and Reorder Point for Engro Polymers and Chemicals
Authors: Ali Akber Jaffri, Asad Naseem, Javeria Khan, Zubair Hamza, Ishtiaq
Abstract:
The purpose of this study is to determine safety stock, maximum inventory level, reordering point, and reordering quantity by rearranging lot sizes for supplier and customer in MRO (maintenance repair operations) warehouse of Engro Polymers & Chemicals. To achieve the aim, physical analysis method and excel commands were carried out to elicit the customer and supplier data provided by the company. Initially, we rearranged the current lot sizes and MOUs (measure of units) in SAP software. Due to change in lot sizes, we have to determine the new quantities for safety stock, maximum inventory, reordering point and reordering quantity as per company's demand. By proposed system, we saved extra cost in terms of reducing time of receiving from vendor and in issuance to customer, ease of material handling in MRO warehouse and also reduce human efforts.Keywords: maintenance repair operation, maximum inventory, reorder quantity, safety stock
Procedia PDF Downloads 2784208 High-Resolution Surface Temperature Changes for Portugal Under CMIP6 Future Climate Scenarios
Authors: David Carvalho
Abstract:
Future changes in the mean, maximum and minimum temperature in continental Portugal were investigated using high-resolution future climate projections based on the latest IPCC AR6 CMIP6 climate scenarios. The results show that the mean, maximum and minimum temperatures are projected to increase substantially in all of continental Portugal, particularly in the south-central inland regions. For the near-term future (2046-2065 period), SSP3-7.0 is the future climate scenario that projects higher increases of around 1 ºC, 1.5 ºC and 2 ºC for the daily mean, maximum and minimum temperatures, respectively. For the long-term future (2081-2100 period), the projected warming is higher, particularly under the SSP5-8.5 future climate scenario with projected warmings of 3 ºC, 3.5 ºC and 2.5 ºC for the daily mean, maximum and minimum temperatures, respectively. Occurrences of hot days (mean temperature above 30 ºC), very hot days (maximum temperature above 40 ºC) and tropical nights (minimum temperature above 20 ºC) are all projected to increase up to 35-40, 12-15 and 50 more days per year, respectively, mainly in the interior areas of Portugal. Oppositely, the occurrence of frost days is projected to decrease in practically all mountainous areas in Portugal. These results show a clear tendency of a significant increase in the surface temperatures and frequency of occurrence of extreme temperature episodes in continental Portugal, which can have severe impacts on the population, environment, economy and vital human activities such as agriculture.Keywords: climate change, global warming, CMIP6, Portugal
Procedia PDF Downloads 384207 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA
Procedia PDF Downloads 1534206 Effect of Chemicals on Keeping Quality and Vase Life of Carnation (Dianthus caryophyllus L.) Cv. Eskimo
Authors: Qurrat Ul Ain Farooq, Misha Arshad, Malik Abid Mehmood
Abstract:
The experiment under discussion was carried out to check the effect of different concentrations of sucrose (2%, 4%, 6%), CuSO4 (200ppm, 300ppm, 400 ppm), GA3 (25ppm, 50ppm, 75 ppm), and combinations of sucrose and GA3 (2% +25 ppm), (4%+50 ppm), (6%+75 ppm) on the carnation cut flower. Visual symptoms of flower senescence, changes in weight (g) of a flower was observed and recorded by using weight balance. The experiment was laid out according to CRD (Complete Randomized Design) it was two-factor factorial, the software used for the analysis was Statistix. Maximum TSS were found in 6% sucrose + 75 ppm GA3 (8.3 %) followed by CuSO4 400 ppm, 4% sucrose + 50 ppm GA3 and 6% sucrose + 75 ppm GA3. Maximum vase life in term of days was recorded in treatment. CuSO4 400 ppm and 6% sucrose + 75 ppm GA3 (8 days) followed by CuSO4 200 ppm (7.7 days). CuSO4 300 ppm & 6% sucrose + 75 ppm GA3 were at par (7 days). Maximum water uptake was also observed in 6% sucrose + 75 ppm GA3 (56.7 ml) followed by CuSO4 400 ppm (49.7 ml) and 50 ppm GA3 (45 ml). Hence, CuSO4 400 ppm found best in all aspects.Keywords: carnation, vaselife, GA3, CuSO4, sucrose
Procedia PDF Downloads 3494205 Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement
Authors: Zhiqiang Cheng, Qingliang He, Lu Li, Jie Ren
Abstract:
The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement.Keywords: frost heave, pipeline, stress analysis, thaw settlement
Procedia PDF Downloads 1874204 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1064203 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 3104202 Effect of Silicon in Mitigating Cadmium Toxicity in Maize
Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq
Abstract:
Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.Keywords: antioxidant, cadmium, maize, silicon
Procedia PDF Downloads 5204201 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature
Procedia PDF Downloads 834200 The Influence of Cycle Index of Simulation Condition on Main Bearing Wear Prognosis of Internal Combustion Engine
Authors: Ziyu Diao, Yanyan Zhang, Zhentao Liu, Ruidong Yan
Abstract:
The update frequency of wear profile in main bearing wear prognosis of internal combustion engine plays an important role in the calculation efficiency and accuracy. In order to investigate the appropriate cycle index of the simplified working condition of wear simulation, the main bearing-crankshaft journal friction pair of a diesel engine in service was studied in this paper. The method of multi-body dynamics simulation was used, and the wear prognosis model of the main bearing was established. Several groups of cycle indexes were set up for the wear calculation, and the maximum wear depth and wear profile were compared and analyzed. The results showed that when the cycle index reaches 3, the maximum deviation rate of the maximum wear depth is about 2.8%, and the maximum deviation rate comes to 1.6% when the cycle index reaches 5. This study provides guidance and suggestions for the optimization of wear prognosis by selecting appropriate value of cycle index according to the requirement of calculation cost and accuracy of the simulation work.Keywords: cycle index, deviation rate, wear calculation, wear profile
Procedia PDF Downloads 1704199 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 2954198 Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement
Authors: Zhao Weijie, Lin Xinjian, Liu Xiaojuan, Li Lihua
Abstract:
The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz.Keywords: bio-impedance, improved Howland current pump, load characteristics, bioengineering
Procedia PDF Downloads 5154197 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems
Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems
Procedia PDF Downloads 6114196 Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use
Authors: Urbi Pal, Piyas Palit, Jitendra Mathur, Abhay Chaturvedi, Sandip Bhattacharya
Abstract:
The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel.Keywords: cable reel spring, fatigue life, stress, spring steel
Procedia PDF Downloads 1564195 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3974194 Application of Optical Method for Calcul of Deformed Object Samples
Authors: R. Daira
Abstract:
The electronic speckle interferometry technique used to measure the deformations of scatterers process is based on the subtraction of interference patterns. A speckle image is first recorded before deformation of the object in the RAM of a computer, after a second deflection. The square of the difference between two images showing correlation fringes observable in real time directly on monitor. The interpretation these fringes to determine the deformation. In this paper, we present experimental results of deformation out of the plane of two samples in aluminum, electronic boards and stainless steel.Keywords: optical method, holography, interferometry, deformation
Procedia PDF Downloads 4054193 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3704192 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite
Procedia PDF Downloads 1474191 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 4294190 A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train
Authors: Geochul Jeong, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method.Keywords: tram-train, traction motor, IPMSM, synchronous motor, railway vehicles
Procedia PDF Downloads 4714189 In Vitro Assessment of Anti-microbial Properties of Murraya Koenigii Extract
Authors: Kinza Khan, Dad Muhmmad, Asif Saleem, Nadia Mukhtar, Tahir Yaqub
Abstract:
Ethomedicines are more commonly used in underdeveloped and developing countries. These medicines are sometimes more potent in controlling microbial infections than conventional medicines. Medicinal plants have been common practice to cure many diseases for centuries. Murraya koenigii is one of these plants and is commonly used in South Asian countries as a flavoring agent in food. To evaluate its anti-microbial activity, six different bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Bacillus cereus and Klebsiella pneumonia were used. N-hexane extract of Murraya koenigii leaves shows maximum activity against Bacillus cereus. Acetone extract of Murraya koenigii shoots showed more efficient activity against Pseudomonas aeruginosa Dichloromethane extracts showed maximum activity against Bacillus cereus. Ethanol extract exhibited maximum activity against Pseudomonas aeruginosa and Klebsiella pneumoniae. The methanol extract of Murraya koenigii shoots displayed maximum antibacterial activity against Bacillus cereus. Antifungal activity Ethanol extract was more effective against Candida albicans.Keywords: ethnomedicines, bacteria, fungi, murraya koenigii, antimicrobial activity
Procedia PDF Downloads 964188 An Effect of Organic Supplements on Stimulating Growth of Dendrobium Protocorms and Seedlings
Authors: Sunthari Tharapan, Chockpisit Thepsithar, Kullanart Obsuwan
Abstract:
This study was aimed to investigate the effect of various organic supplements on growth and development of Dendrobium discolor’s protocorms and seedlings growth of Dendrobium Judy Rutz. Protocorms of Dendrobium discolor with 2.0 cm. in diameter and seedlings of Dendrobium Judy Rutz at the same size (0.5 cm. height) were sub-cultured on Hyponex medium supplemented with cow milk (CM), soy milk (SM), potato extract (PE) and peptone (P) for 2 months. The protocorms were developed to seedlings in all treatments after cultured for 2 months. However, the best results were found on Hyponex medium supplemented with P was the best in which the maximum fresh and dry weight and maximum shoot height were obtained in this treatment statistically different (p ≤ 0.05) to other treatments. Moreover, Hyponex medium supplemented with P also stimulated the maximum mean number of 5.7 shoots per explant which also showed statistically different (p ≤ 0.05) when compared to other treatments. The results of growth of Dendrobium Judy Rutz seedlings indicated the medium supplemented with 100 mL/L PE enhanced the maximum fresh and dry weigh per explants with significantly different (p ≤ 0.05) in fresh weight from other treatments including the control medium without any organic supplementation. However, the dry weight was not significantly different (p ≤ 0.05) from medium supplemented with SM and P. There was multiple shoots induction in all media with or without organic supplementation ranging from 2.6 to 3 shoots per explants. The maximum shoot height was also obtained in the seedlings cultured on medium supplemented with PE while the longest root length was found in medium supplemented with SM.Keywords: fresh weight, in vitro propagation, orchid, plant height
Procedia PDF Downloads 3654187 Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine
Authors: Shrikant Ghadage
Abstract:
Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse.Keywords: hypersonic flow, scramjet, shock waves, specific impulse, mathematical analysis
Procedia PDF Downloads 1704186 Evaluation of the Gas Exchange Characteristics of Selected Plant Species of Universiti Tun Hussein Onn Malaysia, UTHM
Authors: Yunusa Audu, Alona Cuevas Linatoc, Aisha Idris
Abstract:
The maximum carboxylation rate of Rubisco (Vcmax) and the maximum electron transport rate (Jmax), light compensation point (LCP), light saturation point (LSP), maximum photosynthesis (Amax), and apparent quantum yield (Aqy) are gas exchange characteristics that are derived from the carbon dioxide (CO2) and light response curves. This characteristics can be affected by the level of CO2 and light received by the plant. Moreover, the characteristics determines the photosynthetic capacity of the plant. The objective of the study is to evaluate the gas exchange characteristics of selected plant species of UTHM. Photosynthetic carbon dioxide (A\Ci) and light (A/Q) response curves were measured using portable photosynthesis system (LICOR). The results shows that both A/Ci and A/Q curves increases as CO2 and light increases, but reach to a certain point where the curves will become saturated. Spathodea campanulata was having the highest Vcmax (52.14±0.005 µmolCO2 m-2s-1), Jmax (104.461±0.011 µmolCO2 m-2s-1) and Aqy (0.072±0.001 mol CO2 mol-1 photons). The highest LCP was observed in Rhaphis excelsa (69.60±0.067 µmol photons m-2s-1) while the highest LSP was recorded for Costus spicatus (1576.69±0.173 µmol photons m-2s-1). It was concluded that the plants need high light intensity and CO2 for their maximum assimilation rate.Keywords: Gas, Co2, Exchange, Plants
Procedia PDF Downloads 184185 Utilization of Fins to Improve the Response of Pile under Torsional Loads
Authors: Waseim Ragab Azzam Ahmed Mohamed Nasr, Aalaa Ibrahim Khater
Abstract:
Torsional loads from offshore wind turbines, waves, wind, earthquakes, ship collisions in the maritime environment, and electrical transmission towers might affect the pile foundations. Torsional loads can also be caused by the axial load from the sustaining structures. The paper introduces the finned pile, an alternative method of pile modification. The effects of torsional loads were investigated through a series of experimental tests aimed at improving the torsional capacity of a single pile in the sand (where sand was utilized in a state of medium density (Dr = 50%), with or without fins. In these tests, the fins' length, width, form, and number were varied to see how these attributes affected the maximum torsional capacity of the piles. We have noticed the torsion-rotation reaction. The findings demonstrated that the fins improve the maximum torsional capacity of the piles. It was demonstrated that a length of 0.6 times the embedded pile's length and a width equivalent to the pile's diameter constitute the optimal fin geometry. For the conventional pile and the finned pile, the maximum torsional capacities were determined to be 4.12 N.m. and 7.36 N.m., respectively. When subjected to torsional loads, the fins' presence enhanced the piles' maximum torsional capacity by almost 79%.Keywords: clean sand, finned piles, model tests, torsional load
Procedia PDF Downloads 704184 Pathogenicity of Entomopathogenic Fungi, Beauveria bassiana Against Red Palm Weevil, (Rhynchophorus ferrugineus)
Authors: Muhammad Mamoon-Ur-Rashid, Gul Rehman
Abstract:
Entomopathogenic fungi are considered effective bio-control agents for the management of a range of insect pests including red palm weevil. The research studies were conducted under laboratory and field conditions against 5th and 6th instars larvae and adults of [Rhynchophorus ferrugineus (Olivier)] at the faculty of Agriculture, Gomal University Dera Ismail Khan (KPK) Pakistan. The 5th instar larvae were used under field conditions whereas, the 6th instar larvae and newly emerged adults were used under lab conditions. Conidial suspensions were used at five different concentrations of 1×10⁴, 1×10⁵, 1×10⁶, 1×10⁷ and 1×10⁸, conidia per ml. The data were recorded on the mortality, total larval duration, weight of larvae, pre-pupal and pupal durations, percent pupal formation, pupal weight, percent adult emergence, and adult longevity (♂ and ♀) of red palm weevil. The B. bassiana had varying degrees of pathogenicity against different developmental stages of red palm weevil. The maximum larval duration (113.40 days) was noted when 5th instar larvae were treated with the maximum concentration (1 × 10⁸) of B. bassiana, whereas; the minimum total larval duration of 87.20 days was recorded on the lowest concentration (1 × 10⁴) of B. bassiana. The maximum pre-pual and pupal durations were noted at the maximum concentration. The maximum life span of adult male and females were noted at the lowest concentration, whereas; the minimum values were noted at the maximum concentration. The earliest mortality of red palm weevil was observed 1-day after treatment at higher concentrations of 1 × 10⁷ and 1 × 10⁸, whereas; it was recorded 3 and 4 days after treatment at lower concentrations of 1 × 10⁵ and 1 × 10⁴. At 10 days after treatment, the entomopathogenic fungus caused > 80% cumulative mortality of 5th and 6th instar larvae and adult weevils at the maximum concentrations which were more than double than those recorded at the lowest concentration. Overall, the 5th instar larvae of red palm weevils were most susceptible to the fungus compared to the 6th instar larvae and adult weevils. Based on current findings, it is suggested that entomopathogenic fungi could be used for the safer management of red palm weevil.Keywords: entomopathogenic nematodes, mortality, red palm weevil, sub-lethal effects
Procedia PDF Downloads 924183 Screening of Different Exotic Varieties of Potato through Adaptability Trial for Local Cultivation
Authors: Arslan Shehroz, Muhammad Amjad Ali, Amjad Abbas, Imran Ramzan, Muhammad Zunair Latif
Abstract:
Potato (Solanum tuberosum L.) is the 4th most important food crop of the world after wheat, rice and maize. It is the staple food in many European countries. Being rich in starch (one of the main three food ingredients) and having the highest productivity per unit area, has great potential to address the challenge of the food security. Processed potato is also used as chips and crisps etc as ‘fast food’. There are many biotic and abiotic factors which check the production of potato and become hurdle in achievement production potential of potato. 20 new varieties along with two checks were evaluated. Plant to plant and row to row distances were maintained as 20 cm and 75 cm, respectively. The trial was conducted according to the randomized complete block design with three replications. Normal agronomic and plant protection measures were carried out in the crop. It is revealed from the experiment that exotic variety 171 gave the highest yield of 35.5 t/ha followed by Masai with 31.0 t/ha tuber yield. The check variety Simply Red 24.2 t/ha yield, while the lowest tuber yield (1.5 t/ha) was produced by the exotic variety KWS-06-125. The maximum emergence was shown by the Variety Red Sun (89.7 %). The lowest emergence was shown by the variety Camel (71.7%). Regarding tuber grades, it was noted that the maximum Ration size tubers were produced by the exotic variety Compass (3.7%), whereas 11 varieties did not produce ration size tubers at all. The variety Red Sun produced lowest percentage of small size tubers (12.7%) whereas maximum small size tubers (93.0%) were produced by the variety Jitka. Regarding disease infestation, it was noted that the maximum scab incidence (4.0%) was recorded on the variety Masai, maximum rhizoctonia attack (60.0%) was recorded on the variety Camel and maximum tuber cracking (0.7%) was noted on the variety Vendulla.Keywords: check variety, potato, potential and yield, trial
Procedia PDF Downloads 378