Search results for: crop disease detection
7760 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 4637759 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 1227758 Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria
Authors: Ejoh Nonso Francis
Abstract:
: Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond.Keywords: irrigation scheduling, sustainable agriculture, soil moisture sensors, weather data, water use efficiency, crop productivity, nigeria, onitsha, anambra state, technology-based irrigation scheduling, water resources, environmental degradation, crop water requirements, overwatering, water waste, farming systems, scalability
Procedia PDF Downloads 787757 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 4387756 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array
Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi
Abstract:
Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.Keywords: acoustic sensing, direction of arrival, drone detection, microphone array
Procedia PDF Downloads 1607755 Rapid Detection System of Airborne Pathogens
Authors: Shigenori Togashi, Kei Takenaka
Abstract:
We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.Keywords: viruses, sampler, mist, detection, fluorescent dyes, microreaction
Procedia PDF Downloads 4757754 Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions
Authors: Igor Izosimov
Abstract:
This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions.Keywords: actinides/lanthanides detection, laser spectroscopy with time resolution, luminescence/chemiluminescence, solutions
Procedia PDF Downloads 3337753 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images
Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan
Abstract:
Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices
Procedia PDF Downloads 3337752 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 827751 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment
Authors: Temitayo Tosin Alawiye
Abstract:
Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.Keywords: agricultural waste, climate change, green energy, soil borne plant disease
Procedia PDF Downloads 2697750 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection
Authors: Jyoti Bharti, M. K. Gupta, Astha Jain
Abstract:
This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.Keywords: face detection, Viola Jones, false positives, OpenCV
Procedia PDF Downloads 4067749 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop
Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti
Abstract:
The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.Keywords: residual boron, zinc, rice, wheat
Procedia PDF Downloads 1557748 Investigation of Clubroot Disease Occurrence under Chemical and Organic Soil Environment
Authors: Zakirul Islam, Yugo Kumokawa, Quoc Thinh Tran, Motoki Kubo
Abstract:
Clubroot is a disease of cruciferous plant caused by soil born pathogen Plasmodiophora brassicae and can significantly limit the production through rapid spreading. The present study was designed to investigate the effect of cultivation practices (chemical and organic soils) on clubroot disease development in Brassica rapa. Disease index and root bacterial composition were investigated for both chemical and organic soils. The bacterial biomass and diversity in organic soil were higher than those in chemical soil. Disease severity was distinct for two different cultivation methods. The number of endophytic bacteria decreased in the infected root for both soils. The increased number of endophytic bacterial number led to reduce the proliferation of pathogen spore inside the root and thus reduced the disease severity in organic plants.Keywords: clubroot disease, bacterial biomass, root infection, disease index, chemical cultivation, organic cultivation
Procedia PDF Downloads 817747 Cardiovascular Disease Is Common among Patients with Systemic Lupus Erythematosus
Authors: Fathia Ehmouda Zaid, Reim Abudelnbi
Abstract:
Cardiovascular disease is a major cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Patients and method: Cross-section study (68) patients diagnosed as systemic lupus erythematosus (SLE), who visited the outpatient clinic of rheumatology, these patients were interviewed with a structured questionnaire about their past and current clinically for presence of Cardiovascular disease in systemic lupus and use SLEDAI, specific tests [ECG –ECHO –CXRAY] the data are analyzed statistically by Pearson's correlation coefficient was calculated and statistical significance was defined as P< 0.05,during period (2013-2014). Objective: Estimation Cardiovascular disease manifestation of systemic lupus erythematosus, correlation with disease activity, morbidity, and mortality. Result: (68) Patients diagnosed as systemic lupus erythematosus' age range from (18-48 years), M=(13±29Y), Sex were female 66/68 (97.1%), male 2/68 (2.9%),duration of disease range[1-15year], M =[7±8y], we found Cardiovascular disease manifestation of systemic lupus erythematosus 32/68 (47.1%), correlation with disease activity use SLEDAI,(r= 476** p=0.000),Morbidity,(r= .554**; p=0.000) and mortality (r=.181; p=.139), Cardiovascular disease manifestations of systemic lupus erythematosus are pericarditis 8/68 (11.8%), pericardial effusion 6/68 (8.8%), myocarditis 4/68 (5.9 %), valvular lesions (endocarditis) 1/68 (1.5%), pulmonary hypertension (PAH) 12/68 (17.6%), coronary artery disease 1/68 (1.5%), none of patients have conduction abnormalities involvement. Correlation with disease activity use SLEDAI, pericarditis (r= .210, p=.086), pericardial effusion (r= 0.079, p=.520), myocarditis (r= 272*, p=.027), valvular lesions (endocarditis) (r= .112, p= .362), pulmonary hypertension (PAH) (r= .257*, p=.035) and coronary artery disease (r=.075, p=.544) correlation between cardiovascular disease manifestations of systemic lupus erythematosus and specific organ involvement we found Mucocutaneous (r=.091 p= .459), musculoskeletal (MSK) (r=.110 p=.373), Renal disease (r=.278*, p=.022), neurologic disease (r=.085, p=.489) and Hematologic disease (r=-.264*, p=.030). Conclusion: Cardiovascular manifestation is more frequent symptoms with systemic lupus erythematosus (SLE) is 47 % correlation with disease activity and morbidity but not with mortality. Recommendations: Focus research to evaluation and an adequate assessment of cardiovascular complications on the morbidity and mortality of the patients with SLE are still required.Keywords: cardiovascular disease, systemic lupus erythematosus, disease activity, mortality
Procedia PDF Downloads 4447746 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 677745 Evaluation of Disease Risk Variables in the Control of Bovine Tuberculosis
Authors: Berrin Şentürk
Abstract:
In this study, due to the recurrence of bovine tuberculosis, in the same areas, the risk factors for the disease were determined and evaluated at the local level. This study was carried out in 32 farms where the disease was detected in the district and center of Samsun province in 2014. Predetermined risk factors, such as farm, environmental and economic risks, were investigated with the survey method. It was predetermined that risks in the three groups are similar to the risk variables of the disease on the global scale. These risk factors that increase the susceptibility of the infection must be understood by the herd owners. The risk-based contagious disease management system approach should be applied for bovine tuberculosis by farmers, animal health professionals and public and private sector decision makers.Keywords: bovine tuberculosis, disease management, control, outbreak, risk analysis
Procedia PDF Downloads 4027744 Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)
Authors: N. N. Lingaraju, A. Sathish, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar
Abstract:
Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹).Keywords: distillery spentwash, finger millet, maize, waste water
Procedia PDF Downloads 3587743 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image
Authors: Lan Du, Yan Wang, Hui Dai
Abstract:
Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation
Procedia PDF Downloads 3867742 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving
Authors: Samane Sharifi Monfared, Lavdie Rada
Abstract:
Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing
Procedia PDF Downloads 947741 Prevalence of Periodontal Diseases in Children with Herpetic Stomatitis in City Tashkent
Authors: Akhad Ibrokhimov
Abstract:
Update of preventive medicine has exacerbated the problem of cause-and-effect relationship between the presence of herpetic stomatitis (HS) and periodontal disease. Comprehensive survey of children with herpetic stomatitis, according to WHO equirements, on the territory of Tashkent years was conducted. Objective: To analyze the prevalence and intensity of periodontal tissue diseases in children with herpetic stomatitis. Materials and methods. Dental disease in Tashkent was studied in 156 children with herpetic stomatitis, as a control, the incidence of dental studied in 153 children of comparable age and sex never without a history of herpetic stomatitis. Results and discussion. The study revealed that 42,86 ± 13,23% of children with Herpetic stomatitis in the age group 6 years, 1 month - 10 years suffered from periodontal disease, the incidence of periodontal disease in the control group was 14,29 ± 9,35% (R≥0 05) corresponding to the frequency of detection of sextants with bleeding and tartar was equal to 35,71 ± 12,80% vs. 7,14 ± 6,88% (R≥0,05) and 14,29 ± 9,35% against 7 14 ± 6,88% (R≥0,05). Status of periodontal tissues was assessed in age groups 6 years, 1 month - 10 years and 10 years, 1 month - 15 years. The intensity of periodontal lesions observed at the level of 1,79 ± 0,06 vs. 0,66 ± 0,03 (P ≤ 0,05) affected sextant, including sextants with bleeding 1,62 ± 0,07 vs. 0.65 ± 0 , 03 (P ≤ 0,05) and sextants tartar - 0,17 ± 0,008 vs. 0,10 ± 0,008 (P ≤ 0,05). At age 10 years, 1 month - 15 years, a higher prevalence of signs of periodontal lesion was identified in patients with table of contents in 80,00 ± 12,65% of cases versus 30,00 ± 14,49% (P ≤ 0,05), and prevailed bleeding gums 70,00 ± 14,49% against 20,00 ± 11,83% (p ≤ 0.05), tartar was diagnosed respectively in 30,00 ± 14,49% against 10,00 ± 9,48% (R≥0,05) surveyed.Keywords: vestibular surface, abnormal abrasion, composites, prosthesis
Procedia PDF Downloads 3447740 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 2687739 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a high-quality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.Keywords: fake reviews, feature collection, opinion spam, spam detection
Procedia PDF Downloads 4137738 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model
Authors: Sujay Kotwale, Ramasubba Reddy M.
Abstract:
Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost
Procedia PDF Downloads 1197737 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 717736 Detection of Elephant Endotheliotropic Herpes Virus in a Wild Asian Elephant Calf in Thailand by Using Real-Time PCR
Authors: Bopit Puyati, Anchittha Kaewchana, Nuntita Ruksachat
Abstract:
In January 2018, a male wild elephant, approximately 2 years old, was found dead in Phu Luang Wildlife Sanctuary, Loei province. The elephant was likely to die around 2 weeks earlier. The carcass was decayed without any signs of attack or bullet. No organs were removed. A deadly viral disease was suspected. Different organs including lung, liver, intestine and tongue were collected and submitted to the veterinary research and development center, Surin province for viral detection. The samples were then examined with real-time PCR for detecting U41 Major DNA binding protein (MDBP) gene and with conventional PCR for the presence of specific polymerase gene. We used tumor necrosis factor (TNF) gene as the internal control. In our real-time PCR, elephant endotheliotropic herpesvirus (EEHV) was recovered from lung, liver, and tongue whereas only tongue provided a positive result in the conventional PCR. All samples were positive with TNF gene detection. To our knowledge, this is the first report of EEHV detection in wild elephant in Thailand. EEHV surveillance in this wild population is strongly suggested. Linkage between EEHV in wild and domestic elephants should be further explored.Keywords: elephant endotheliotropic herpes virus, PCR, Thailand, wild Asian elephant
Procedia PDF Downloads 1437735 Data Analytics of Electronic Medical Records Shows an Age-Related Differences in Diagnosis of Coronary Artery Disease
Authors: Maryam Panahiazar, Andrew M. Bishara, Yorick Chern, Roohallah Alizadehsani, Dexter Hadleye, Ramin E. Beygui
Abstract:
Early detection plays a crucial role in enhancing the outcome for a patient with coronary artery disease (CAD). We utilized a big data analytics platform on ~23,000 patients with CAD from a total of 960,129 UCSF patients in 8 years. We traced the patients from their first encounter with a physician to diagnose and treat CAD. Characteristics such as demographic information, comorbidities, vital, lab tests, medications, and procedures are included. There are statistically significant gender-based differences in patients younger than 60 years old from the time of the first physician encounter to coronary artery bypass grafting (CABG) with a p-value=0.03. There are no significant differences between the patients between 60 and 80 years old (p-value=0.8) and older than 80 (p-value=0.4) with a 95% confidence interval. This recognition would affect significant changes in the guideline for referral of the patients for diagnostic tests expeditiously to improve the outcome by avoiding the delay in treatment.Keywords: electronic medical records, coronary artery disease, data analytics, young women
Procedia PDF Downloads 1487734 Comparative Analysis of Yield before and after Access to Extension Services among Crop Farmers in Bauchi Local Government Area of Bauchi State, Nigeria
Authors: U. S. Babuga, A. H. Danwanka, A. Garba
Abstract:
The research was carried out to compare the yield of respondents before and after access to extension services on crop production technologies in the study area. Data were collected from the study area through questionnaires administered to seventy-five randomly selected respondents. Data were analyzed using descriptive statistics, t-test and regression models. The result disclosed that majority (97%) of the respondent attended one form of school or the other. The majority (78.67%) of the respondents had farm size ranging between 1-3 hectares. The majority of the respondent adopt improved variety of crops, plant spacing, herbicide, fertilizer application, land preparation, crop protection, crop processing and storage of farm produce. The result of the t-test between the yield of respondents before and after access to extension services shows that there was a significant (p<0.001) difference in yield before and after access to extension. It also indicated that farm size was significant (p<0.001) while household size, years of farming experience and extension contact were significant at (p<0.005). The major constraint to adoption of crop production technologies were shortage of extension agents, high cost of technology and lack of access to credit facility. The major pre-requisite for the improvement of extension service are employment of more extension agents or workers and adequate training. Adequate agricultural credit to farmers at low interest rates will enhance their adoption of crop production technologies.Keywords: comparative, analysis, yield, access, extension
Procedia PDF Downloads 3647733 Nutritional Value and Leaf Disease Resistance of Different Varieties of Wheat
Authors: Danutė Jablonskytė-Raščė, Vidas Damanauskas
Abstract:
The wheat (Triticum) genus is divided into many species, of which only two are widely distributed in the world - common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.). Common (soft) wheat is the most common type of wheat in the world and the most suitable for the harsh climate of Lithuania, but the grains have lower protein content and poorer nutritional properties. Durum wheat is characterized by a high protein content of the grain, but it is a crop of warmer climates grown in southern countries, Italy, Spain, the United States, Egypt, etc. Today's important issue is food, its resources and quality. The research focuses on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the warming climate conditions. Climatic conditions change the distribution of fungi and their hosts. Plants that have grown in our climate for many years have adapted to the use of fungicides, so the aim is to study cereal varieties grown in warmer climates and compare them with our country's varieties, studying their nutritional value and the spread of fungal diseases. The field experiments of different varieties of wheat were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2023. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the resistance to leaf diseases and the nutritional value of various wheat varieties. This research aims to focus on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the conditions of the warming climate. The study found that hot and humid summer weather led to the spread of foliar diseases in wheat. Tan spot (Pyrenophora tritici-repentis) is mostly spread in wheat crops. This disease had an average prevalence of 86.90%. The wheat crop was sparse, so this year was unfavorable for the spread of powdery mildew (Blumeria graminis). Dry weather prevailed during the period of flowering of cereals, which prevented the spread of ear diseases. Examining the qualitative indicators of grain, it was found that durum wheat had the best parameters.Keywords: varieties, wheat, leaf disease, grain quality
Procedia PDF Downloads 457732 Implication to Environmental Education of Indigenous Knowledge and the Ecosystem of Upland Farmers in Aklan, Philippines
Authors: Emily Arangote
Abstract:
This paper defined the association between the indigenous knowledge, cultural practices and the ecosystem its implication to the environmental education to the farmers. Farmers recognize the need for sustainability of the ecosystem they inhabit. The cultural practices of farmers on use of indigenous pest control, use of insect-repellant plants, soil management practices that suppress diseases and harmful pests and conserve soil moisture are deemed to be ecologically-friendly. Indigenous plant materials that were more drought- and pest-resistant were grown. Crop rotation was implemented with various crop seeds to increase their disease resistance. Multi-cropping, planting of perennial crops, categorization of soil and planting of appropriate crops, planting of appropriate and leguminous crops, alloting land as watershed, and preserving traditional palay seed varieties were found to be beneficial in preserving the environment. The study also found that indigenous knowledge about crops are still relevant and useful to the current generation. This ensured the sustainability of our environment and incumbent on policy makers and educators to support and preserve for generations yet to come.Keywords: cultural practices, ecosystem, environmental education, indigenous knowledge
Procedia PDF Downloads 3197731 Application of Molecular Markers for Crop Improvement
Authors: Monisha Isaac
Abstract:
Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.Keywords: molecular markers, crop productivity, genetic diversity, genotype
Procedia PDF Downloads 516