Search results for: chemical kinetic
4895 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle
Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj
Abstract:
A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.Keywords: pyrolysis, kinetics, model, single particle
Procedia PDF Downloads 3204894 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.Keywords: heavy metal, orchard, pollution and monitoring, sediment
Procedia PDF Downloads 3854893 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles
Authors: K. Verma, v. S. Moholkar
Abstract:
In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation
Procedia PDF Downloads 674892 Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film
Authors: Prashanta Dhoj Adhikari
Abstract:
We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication.Keywords: chemical vapor deposition, graphene film, surface functionalization
Procedia PDF Downloads 4614891 Kinetic Energy Recovery System Using Spring
Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe
Abstract:
New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring
Procedia PDF Downloads 2014890 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 5004889 Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition
Authors: Zellagui Rahima, Chaumont Denis, Boughelout Abderrahman, Adnane Mohamed
Abstract:
Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry.Keywords: thin film, solar cells, transmition, cdzns
Procedia PDF Downloads 2604888 Removal of Lead from Aqueous Solutions by Biosorption on Pomegranate Skin: Kinetics, Equilibrium and Thermodynamics
Authors: Y. Laidani, G. Henini, S. Hanini, A. Labbaci, F. Souahi
Abstract:
In this study, pomegranate skin, a material suitable for the conditions in Algeria, was chosen as adsorbent material for removal of lead in an aqueous solution. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, the initial concentration of metal, and temperature. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g, 0.035 mg/g; 1.25 g, 0.096 mg/g). The maximum biosorption occurred at pH value of 8 for the lead. The equilibrium uptake was increased with an increase in the initial concentration of metal in solution (Co = 4 mg/L, qt = 1.2 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficients (R2 > 0.995) and a maximum monolayer adsorption capacity of 0.85 mg/g for lead. The adsorption of the lead was exothermic in nature (ΔH° = -17.833 kJ/mol for Pb (II). The reaction was accompanied by a decrease in entropy (ΔS° = -0.056 kJ/K. mol). The Gibbs energy (ΔG°) increased from -1.458 to -0.305 kJ/mol, respectively for Pb (II) when the temperature was increased from 293 to 313 K.Keywords: biosorption, Pb (+II), pomegranate skin, wastewater
Procedia PDF Downloads 2704887 Removal of Xylenol Orange and Eriochrome Black T Dyes from Aqueous Solution Using Chemically Activated Cocos nucifera and Mango Seed
Authors: Padmesh Tirunelveli Narayanapillai, Joel Sharwinkumar, Gaitri Saravanan
Abstract:
The biosorption of Xylenol Orange (XO) and Eriochrome Black T (EBT) from aqueous solutions by chemically activated Cocos nucifera and mango seed as a low-cost, natural, and eco-friendly biosorbents was investigated. The study for biosorption of XO and EBT was optimized by different experimental parameters, initial pH 2–7, temperature 30–60 °C, biosorbent dosage 0.1 – 0.5 g, and XO: EBT dye proportions 0 – 100 by weight %. Physicochemical characteristic studies were conducted by Fourier Transform Infrared (FTIR). The equilibrium uptake was increased with an increase in the initial dye concentrations in the solution. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The experimental isotherms data were analyzed using Langmuir, Freundlich, Redlich-Peterson, and Toth isotherm equations. Thermodynamic parameters ∆Go, ∆Ho, and ∆So were calculated indicating that the biosorption of Xo and EBT dye is a spontaneous and endothermic process. The Langmuir model gave the best fit by higher correlation coefficient (R2 =0.9971) for both biosorbents at optimum circumstances as pH 3, temperature 30°C, dosage 0.5 g for chemically activated Cocos nucifera and 0.4 g for chemically activated mango seeds it assumes as monolayer adsorption. The maximum dye removal efficiency was determined as 79.75% with chemically activated mango seeds compared to chemically activated Cocos nucifera. In summary, this research work showed that chemically modified activated mango seed can be effectively used as a promising low-cost biosorbent for the removal of different XO and EBT mixed dye combinations from aqueous solutions.Keywords: mixed dye proportions, xylenol orange and eriochrome black t, chemically activated cocos nucifera and mango seed, kinetic, isotherm and thermodynamic studies, FTIR
Procedia PDF Downloads 704886 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions
Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat
Abstract:
Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity
Procedia PDF Downloads 674885 The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions
Authors: Felora Rafiei, Shahram Shoaei
Abstract:
The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers.Keywords: biological fertilizer, chemical fertilizer, yield component, yield, corn
Procedia PDF Downloads 3664884 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride
Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen
Abstract:
Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougherKeywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure
Procedia PDF Downloads 2664883 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections
Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu
Abstract:
Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor
Procedia PDF Downloads 4074882 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells
Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba
Abstract:
Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer
Procedia PDF Downloads 4034881 Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model.Keywords: ATC, desulfurization, pyrolysis, tire, TPO
Procedia PDF Downloads 1164880 Chemical Durability of Textured Glass-coat Suitable for Building Application
Authors: Adejo Andrew Ojonugwa, Jomboh Jeff Kator, Garkida Adele Dzikwi
Abstract:
This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material.Keywords: chemical durability, glass-coat, building, recycling
Procedia PDF Downloads 1134879 Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations
Authors: Cemre Polat, Dogan B. Saydam, Mustafa Soyler, Coskun Ozalp
Abstract:
In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder.Keywords: bluff body, flow characteristics, PIV, rectangular cylinder
Procedia PDF Downloads 1514878 Some Conjectures and Programs about Computing the Detour Index of Molecular Graphs of Nanotubes
Authors: Shokofeh Ebrtahimi
Abstract:
Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G.Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.[1] The pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan Gutman, Haruo Hosoya, Milan Randić and Nenad TrinajstićLet G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new program for computing the detour index of molecular graphs of nanotubes by heptagons is determineded. Some Conjectures about detour index of Molecular graphs of nanotubes is included.Keywords: chemical graph, detour matrix, Detour index, carbon nanotube
Procedia PDF Downloads 2924877 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem
Authors: Ernesto Linan, Linda Cruz, Lucero Becerra
Abstract:
In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics
Procedia PDF Downloads 2114876 Cadmium Removal from Aqueous Solution Using Chitosan Beads Prepared from Shrimp Shell Extracted Chitosan
Authors: Bendjaballah Malek; Makhlouf Mohammed Rabeh; Boukerche Imane; Benhamza Mohammed El Hocine
Abstract:
In this study, chitosan was derived from Parapenaeus longirostris shrimp shells sourced from a local market in Annaba, eastern Algeria. The extraction process entailed four chemical stages: demineralization, deproteinization, decolorization, and deacetylation. The degree of deacetylation was calculated to be 80.86 %. The extracted chitosan was physically altered to synthesize chitosan beads and characterized via FTIR and XRD analysis. These beads were employed to eliminate cadmium ions from synthetic water. The batch adsorption process was optimized by analyzing the impact of contact time, pH, adsorbent dose, and temperature. The adsorption capacity of and Cd+2 on chitosan beads was found to be 6.83 mg/g and 7.94 mg/g, respectively. The kinetic adsorption of Cd+2 conformed to the pseudo-first-order model, while the isotherm study indicated that the Langmuir Isotherm model well described the adsorption of cadmium . A thermodynamic analysis demonstrated that the adsorption of Cd+2 on chitosan beads is spontaneous and exothermic.Keywords: Cd, chitosan, chitosanbeds, bioadsorbent
Procedia PDF Downloads 1014875 Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood
Authors: Anahita Yarahmadi, Nazanin Mahboobi, Nahid Sadat Rahmatpour Nori, Mohammad Hossein Bijeh Keshavarzi, Mohammad Javad Shakori
Abstract:
This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics.Keywords: Artemisia annua L, bio-fertilizer, chemical fertilizer, vermicompost
Procedia PDF Downloads 4554874 Flow Control around Bluff Bodies by Attached Permeable Plates
Authors: Gokturk Memduh Ozkan, Huseyin Akilli
Abstract:
The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.Keywords: bluff body, flow control, permeable plate, PIV, VIV, vortex shedding
Procedia PDF Downloads 3604873 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach
Authors: N. V. Kazmiruk, Y. R. Nartsissov
Abstract:
Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling
Procedia PDF Downloads 1204872 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications
Authors: Guohua Cao, Xu Dong
Abstract:
X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.Keywords: molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering
Procedia PDF Downloads 1864871 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production
Authors: Reda Abdel-Aziz
Abstract:
Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment
Procedia PDF Downloads 3184870 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices
Procedia PDF Downloads 3174869 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification
Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih
Abstract:
Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.Keywords: methanol, palm oil, simulation, transesterification, triolein
Procedia PDF Downloads 3204868 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study
Authors: Sami Ayad, Mengshan Lee
Abstract:
The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis
Procedia PDF Downloads 924867 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation
Procedia PDF Downloads 2104866 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate
Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo
Abstract:
A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.Keywords: chemical reaction, MHD, double-diffusive, stretching plate
Procedia PDF Downloads 408