Search results for: binary outcomes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4169

Search results for: binary outcomes

4019 Robotic Assisted vs Traditional Laparoscopic Partial Nephrectomy Peri-Operative Outcomes: A Comparative Single Surgeon Study

Authors: Gerard Bray, Derek Mao, Arya Bahadori, Sachinka Ranasinghe

Abstract:

The EAU currently recommends partial nephrectomy as the preferred management for localised cT1 renal tumours, irrespective of surgical approach. With the advent of robotic assisted partial nephrectomy, there is growing evidence that warm ischaemia time may be reduced compared to the traditional laparoscopic approach. There is still no clear differences between the two approaches with regards to other peri-operative and oncological outcomes. Current limitations in the field denote the lack of single surgeon series to compare the two approaches as other studies often include multiple operators of different experience levels. To the best of our knowledge, this study is the first single surgeon series comparing peri-operative outcomes of robotic assisted and laparoscopic PN. The current study aims to reduce intra-operator bias while maintaining an adequate sample size to assess the differences in outcomes between the two approaches. We retrospectively compared patient demographics, peri-operative outcomes, and renal function derangements of all partial nephrectomies undertaken by a single surgeon with experience in both laparoscopic and robotic surgery. Warm ischaemia time, length of stay, and acute renal function deterioration were all significantly reduced with robotic partial nephrectomy, compared to laparoscopic nephrectomy. This study highlights the benefits of robotic partial nephrectomy. Further prospective studies with larger sample sizes would be valuable additions to the current literature.

Keywords: partial nephrectomy, robotic assisted partial nephrectomy, warm ischaemia time, peri-operative outcomes

Procedia PDF Downloads 141
4018 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
4017 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
4016 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
4015 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 366
4014 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia

Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob

Abstract:

Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.

Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support

Procedia PDF Downloads 109
4013 Outcomes of Live Renal Donors with a History of Nephrolithiasis

Authors: Bin Mohamed Ebrahim, Aminesh Singla, Henry Pleass

Abstract:

Aim: There is an ongoing gap in renal transplantation between organs available for donation and recipients on the waiting list. Live donors with pre-existing or a history of renal calculi were thought to be a relative contraindication due to safety concerns for donors. We aim to review current literature assessing outcomes of donors who were found to have a history of renal calculi. Methods: Ovid and Embase were searched between 1960 to 2021 using key terms and Medical Subject Headings (MeSH) – nephrolithiasis, renal stones, renal transplantation and renal graft. Articles included conference proceedings and journal articles and were not excluded based on patient numbers. Studies were excluded if the specific organ was not identified, duplicated reports found or if post-transplant outcomes were not recorded. Outcomes were donor’s renal function or renal calculi recurrence postoperatively. Results: Upon reviewing 344 articles, 14 manuscripts met inclusion criteria. A total of 152 live donors were identified as having pre-existing or with a history of renal calculi at pre-operative workup. The mean stone size was 2.6 4mm (1 – 16) with a mean follow-up duration of 31.8 months (1 – 96). Seven studies had both outcomes. None showed renal complications or stone recurrence. The remaining studies contained 2 out of 84 patients having recurrent nephrolithiasis. Conclusion: Data suggests minimal morbidity involved for live renal donors with a history of nephrolithiasis. This should encourage surgeons to continue recruiting such donors for kidney transplantation.

Keywords: renal transplantation, renal graft, nephrolithiasis, renal calculi, live donor

Procedia PDF Downloads 180
4012 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 91
4011 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza

Abstract:

The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 426
4010 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid

Authors: Min Wang, Sergey Utev

Abstract:

The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.

Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial

Procedia PDF Downloads 138
4009 Effect of Group Prenatal Care on Adolescent Pregnancy Outcomes: A Randomized Controlled Trial

Authors: Parvin Abedi, Fatemeh Malchi, Mina Iravani, Elham Maraghi, Eesa Mohammadi, Najmieh Saadati

Abstract:

Background: Adolescent pregnancy has major health and social consequences and can lead to adverse maternal and neonatal outcomes. Objectives: The objective of this study was to evaluate the impact of group prenatal care (GPNC) of adolescents on their maternal and neonatal outcomes. Methods: In this study, 294 adolescent pregnant women (aged 15-19) were randomly assigned into two groups of prenatal care (n=147) and individual prenatal care (IPNC) (n=147). Participants in the intervention group received GPNC at 16-20 weeks of gestational age, while the control group received (IPNC). The data were analyzed using the Chi-square test, independent t-test, and linear and logistic tests. Results: As far as weight gain was concerned, 91.7% and 62.1% of the participants in the GPNC and IPNC groups had an appropriate weight gain during pregnancy, respectively OR 6.72 (95% CI 3.40, 13.26). In the GPNC group, 79.2% of participants had exclusive breastfeeding in the first 6 weeks after childbirth and while this rate was 49.7% in the IPNC group, OR 3.92 (95% CI 2.36, 6.64). Preterm birth was observed in 3.4% of the participants in the GPNC group as opposed to 9.5% in the IPNC group OR 6.17 (95% CI 0.73, 51.93). Conclusion: Adolescent women in GPNC have more appropriate weight gain and a higher rate of exclusive breastfeeding compared to adolescent women in IPNC. Group prenatal care could be considered a viable method of care for adolescent pregnant women.

Keywords: group prenatal car, adolescents pregnant women, pregnancy outcomes, neonatal outcomes

Procedia PDF Downloads 19
4008 Relationships between Emotion Regulation Strategies and Well-Being Outcomes among the Elderly and Their Caregivers: A Dyadic Modeling Approach

Authors: Sakkaphat T. Ngamake, Arunya Tuicomepee, Panrapee Suttiwan, Rewadee Watakakosol, Sompoch Iamsupasit

Abstract:

Generally, 'positive' emotion regulation strategies such as cognitive reappraisal have linked to desirable outcomes while 'negative' strategies such as behavioral suppression have linked to undesirable outcomes. These trends have been found in both the elderly and professional practitioners. Hence, this study sought to investigate these trends further by examining the relationship between two dominant emotion regulation strategies in the literature (i.e., cognitive reappraisal and behavioral suppression) and well-being outcomes among the elderly (i.e., successful aging) and their caregivers (i.e., satisfaction with life), using the actor-partner interdependence model. A total of 150 elderly-caregiver dyads participated in the study. The elderly responded to two measures assessing the two emotion regulation strategies and successful aging while their caregivers responded to the same emotion regulation measure and a measure of satisfaction with life. Two criterion variables (i.e., successful aging and satisfaction with life) were specified as latent variables whereas four predictors (i.e., two strategies for the elderly and two strategies for their caregivers) were specified as observed variables in the model. Results have shown that, for the actor effect, the cognitive reappraisal strategy yielded positive relationships with the well-being outcomes for both the elderly and their caregivers. For the partner effect, a positive relationship between caregivers’ cognitive reappraisal strategy and the elderly’s successful aging was observed. The behavioral suppression strategy has not related to any well-being outcomes, within and across individual agents. This study has contributed to the literature by empirically showing that the mental activity of the elderly’s immediate environment such as their family members or close friends could affect their quality of life.

Keywords: emotion regulation, caregiver, older adult, well-being

Procedia PDF Downloads 425
4007 Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel

Authors: Ali Dalirbod, Peyman Ahmadian

Abstract:

Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion.

Keywords: nitride inclusion, simulation, tensile properties, inclusion-matrix interface

Procedia PDF Downloads 317
4006 Productive Engagements and Psychological Wellbeing of Older Adults; An Analysis of HRS Dataset

Authors: Mohammad Didar Hossain

Abstract:

Background/Purpose: The purpose of this study was to examine the associations between productive engagements and the psychological well-being of older adults in the U.S by analyzing cross-sectional data from a secondary dataset. Specifically, this paper analyzed the associations of 4 different types of productive engagements, including current work status, caregiving to the family members, volunteering and religious strengths with the psychological well-being as an outcome variable. Methods: Data and sample: The study used the data from the Health and Retirement Study (HRS). The HRS is a nationally representative prospective longitudinal cohort study that has been conducting biennial surveys since 1992 to community-dwelling individuals 50 years of age or older on diverse issues. This analysis was based on the 2016 wave (cross-sectional) of the HRS dataset and the data collection period was April 2016 through August 2017. The samples were recruited from a multistage, national area-clustered probability sampling frame. Measures: Four different variables were considered as the predicting variables in this analysis. Firstly, current working status was a binary variable that measured by 0=Yes and 1= No. The second and third variables were respectively caregiving and volunteering, and both of them were measured by; 0=Regularly, 1= Irregularly. Finally, find in strength was measured by 0= Agree and 1= Disagree. Outcome (Wellbeing) variable was measured by 0= High level of well-being, 1= Low level of well-being. Control variables including age were measured in years, education in the categories of 0=Low level of education, 1= Higher level of education and sex r in the categories 0=male, 1= female. Analysis and Results: Besides the descriptive statistics, binary logistic regression analyses were applied to examine the association between independent and dependent variables. The results showed that among the four independent variables, three of them including working status (OR: .392, p<.001), volunteering (OR: .471, p<.003) and strengths in religion (OR .588, p<.003), were significantly associated with psychological well-being while controlling for age, gender and education factors. Also, no significant association was found between the caregiving engagement of older adults and their psychological well-being outcome. Conclusions and Implications: The findings of this study are mostly consistent with the previous studies except for the caregiving engagements and their impact on older adults’ well-being outcomes. Therefore, the findings support the proactive initiatives from different micro to macro levels to facilitate opportunities for productive engagements for the older adults, and all of these may ultimately benefit their psychological well-being and life satisfaction in later life.

Keywords: productive engagements, older adults, psychological wellbeing, productive aging

Procedia PDF Downloads 155
4005 Uneven Development: Structural Changes and Income Outcomes across States in Malaysia

Authors: Siti Aiysyah Tumin

Abstract:

This paper looks at the nature of structural changes—the transition of employment from agriculture, to manufacturing, then to different types of services—in different states in Malaysia and links it to income outcomes for households and workers. Specifically, this paper investigates the conditional association between the concentration of different economic activities and income outcomes (household incomes and employee wages) in almost four decades. Using publicly available state-level employment and income data, we found that significant wage premium was associated with “modern” services (finance, real estate, professional, information and communication), which are urban-based services sectors that employ a larger proportion of skilled and educated workers. However, employment in manufacturing and other services subsectors was significantly associated with a lower income dispersion and inequality, alluding to their importance in welfare improvements.

Keywords: employment, labor market, structural change, wage

Procedia PDF Downloads 169
4004 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
4003 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 124
4002 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 521
4001 Predictors of Clinical Failure After Endoscopic Lumbar Spine Surgery During the Initial Learning Curve

Authors: Daniel Scherman, Daniel Madani, Shanu Gambhir, Marcus Ling Zhixing, Yingda Li

Abstract:

Objective: This study aims to identify clinical factors that may predict failed endoscopic lumbar spine surgery to guide surgeons with patient selection during the initial learning curve. Methods: This is an Australasian prospective analysis of the first 105 patients to undergo lumbar endoscopic spine decompression by 3 surgeons. Modified MacNab outcomes, Oswestry Disability Index (ODI) and Visual Analogue Score (VAS) scores were utilized to evaluate clinical outcomes at 6 months postoperatively. Descriptive statistics and Anova t-tests were performed to measure statistically significant (p<0.05) associations between variables using GraphPad Prism v10. Results: Patients undergoing endoscopic lumbar surgery via an interlaminar or transforaminal approach have overall good/excellent modified MacNab outcomes and a significant reduction in post-operative VAS and ODI scores. Regardless of the anatomical location of disc herniations, good/excellent modified MacNab outcomes and significant reductions in VAS and ODI were reported post-operatively; however, not in patients with calcified disc herniations. Patients with central and foraminal stenosis overall reported poor/fair modified MacNab outcomes. However, there were significant reductions in VAS and ODI scores post-operatively. Patients with subarticular stenosis or an associated spondylolisthesis reported good/excellent modified MacNab outcomes and significant reductions in VAS and ODI scores post-operatively. Patients with disc herniation and concurrent degenerative stenosis had generally poor/fair modified MacNab outcomes. Conclusion: The outcomes of endoscopic spine surgery are encouraging, with a low complication and reoperation rate. However, patients with calcified disc herniations, central canal stenosis or a disc herniation with concurrent degenerative stenosis present challenges during the initial learning curve and may benefit from traditional open or other minimally invasive techniques.

Keywords: complications, lumbar disc herniation, lumbar endoscopic spine surgery, predictors of failed endoscopic spine surgery

Procedia PDF Downloads 154
4000 Entrepreneurial Orientation and Innovation Outcomes in Ghanaian Social Enterprises: Interaction Effect of Organizational Unlearning

Authors: Stephen Oduro

Abstract:

With a quantitative research design, this study seeks to analyze how, an intangible resource, Organisational Unlearning shapes the relationship between Entrepreneurial Orientation (EO) and Innovation Outcomes among social entrepreneurship organizations in Ghana. The Resource-Based View (RBV) of the firm and EO-Performance Contingency framework was adopted as the underpinning theories of the study. Entrepreneurial Orientation dimensions, namely Innovativeness, Autonomy, Risk-Taking, Proactiveness, and Competitive aggressiveness were examined to determine its significant, direct influence on the Innovation Outcomes of the social enterprises in Ghana. Organizational Unlearning dimensions, specifically examination of lens fitting, the consolidation of emergent understandings, and framework for changing individual habits were explored to determine whether they strengthen or weaken the direct nexus between Entrepreneurial Orientation dimensions and Innovation Outcomes. A self-administered questionnaire was administered to 556 targeted social enterprises across Africa through online questionnaire platform and the data generated and proposed hypotheses were analyzed and tested using Structural Equation Model-Partial Least Square (SEM-PLS 3) statistical tool. The findings revealed that EO dimensions, specifically proactiveness, autonomy, innovativeness, and risk-taking are positively related to IO, but we found no significant support for competitive aggressiveness. The findings, moreover, divulged that the positive, direct relationship between EO and IO is highly strengthened by OU. It is concluded that OU fully moderates the direct link between EO and IO. The present study contributes to the our understanding of the interrelationship among Entrepreneurial Orientation, Organizational Unlearning, and Innovation Outcomes in the social entrepreneurship context.

Keywords: entrepreneurial orientation, innovation outcomes, organizational unlearning, RBV, SEM-PLS, social enterprise, Africa

Procedia PDF Downloads 140
3999 Exploring Enabling Effects of Organizational Climate on Academicians’ Emotional Intelligence and Learning Outcomes: A Case from Chinese Higher Education

Authors: Zahid Shafait, Jiayu Huang

Abstract:

Purpose: This study is based on a trait-based theory of emotional intelligence. This study intends to explore the enabling effect of organizational climate, i.e., affiliation, innovation, and fairness, on the emotional intelligence of teachers in Chinese higher education institutes. This study, additionally, intends to investigate the direct impact of teachers’ emotional intelligence on their learning outcomes, i.e., cognitive, social, self-growth outcomes and satisfaction with the university experience. Design/methodology/approach: This study utilized quantitative research techniques to scrutinize the data. Moreover, partial least squares structural equation modeling, i.e., PLS-SEM, was used to assess the hypothetical relationships to conclude their statistical significance. Findings: Results confirmed the supposed associations, i.e., the organizational climate has an enabling effect on emotional intelligence. Likewise, emotional intelligence was concluded to have a direct and positive association with learning outcomes in higher education. Practical implications: This study has investigated abandoned research that is enabling the effects of organizational climate on teachers’ emotional intelligence in Chinese higher education. Organizational climate enables emotionally intelligent teachers to learn efficiently and, at the same time, augments their satisfaction and productivity within an institution. Originality/value: This study investigated the enabling effects of organizational climate on teachers’ emotional intelligence in Chinese higher education that is original in investigated country and sector.

Keywords: organizational climate, emotional intelligence, learning outcomes, higher education

Procedia PDF Downloads 74
3998 Survival Outcomes Related to Treatment Modalities in Patients with Oropharyngeal Squamous Cell Carcinoma

Authors: Danni Cheng

Abstract:

Purpose:Surgicallyinclusive treatment(SIT)isthemajor treatment fororopharyngealsquamouscellcarcinoma (OPSCC) in Eastern countries, while nonsurgical treatments(NSTs) are the priority treatment in Western countries. The preferred treatmentsforOPSCC patients remaindebated. Methods:Atotalof 153 consecutive OPSCC casesdiagnosed between 2009 and 2019inWCH, and 15,400 OPSCC cases from SEER database (2000-2017) were obtained. Clinical characteristics, treatments, and survival outcomes were retrospectively collected. We conductedKaplan-Meier curves univariate and multivariate analysis to compare the prognosis of OPSCC patients in WCH, SEER Asian, and SEER all ethnic population by different treatment modalities,HPVstatus, ages, and TNM stages. Results: The 5-year overall survival rate was 59% in WCH, 64% in the SEER all ethnic and 67% in SEER Asian group. In both univariate and multivariate analysis, SIT was observed as a consistent benefit factor for OPSCC patients in all three populations when classified by genders, tumor stages, and HPV status. Patients who underwent SIT had significantly better survival outcomes than those who received NSTsin WCH, SEER Asian, and SEER all ethnic groups. HPV positive status was the beneficial factor of OPSCC patients in all three groups. Besides, male patients had worse survival outcomes in both WCH and SEER Asian group, whereas male patients had better outcomes in the SEER all ethnic group. Conclusion: In contrast to nowadaysNSTs are the first-line therapiesfor OPSCC, our ten-year real-world data and SEER data indicated that OPSCC patients who underwent SIT had better prognosis than NSTs.

Keywords: OPSCC, survival outcome, SEER, treatment modalities

Procedia PDF Downloads 175
3997 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride

Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel

Abstract:

The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.

Keywords: adiphenine hydrochloride, critical micelle concentration, interaction parameter, activity coefficient

Procedia PDF Downloads 269
3996 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 468
3995 Genderqueerness in Polish: A Survey-Based Study of Linguistic Strategies Employed by Genderqueer Speakers of Polish

Authors: Szymon Misiek

Abstract:

The genderqueer (or gender non-binary, both terms referring to those individuals who are identified as neither men nor women) community has been gaining greater visibility over the last few years. This includes legal recognition, representation in popular media, and inclusion of non-binary perspectives in research on transgender issues. Another important aspect of visibility is language. Gender-neutrality, often associated with genderqueer people, is relatively easy to achieve in natural-gender languages such as English. This can be observed in the growing popularity of the 'singular they' pronoun (used specifically with reference to genderqueer individuals) or the gender-neutral title 'Mx.' (as an alternative to 'Ms./Mr.'). 'Singular they' seems to have become a certain standard in the genderqueer community. Grammatical-gender languages, such as Polish, provide for a greater challenge to genderqueer speakers. In Polish, every noun is inherently gendered, while verbs, adjectives, and pronouns inflect for gender. Those who do not wish to settle for using only either masculine or feminine forms (which some genderqueer Polish speakers do choose) have to somehow mix the two, attempt to avoid gendered forms altogether, or turn to non-standard forms, such as neuter (not used for people in standard Polish), plurals (vaguely akin to English 'singular they'), or neologisms (such as verb forms using the '-u-' affix). The following paper presents the results of a survey conducted among genderqueer speakers of Polish regarding their choice of linguistic strategies. As no definitive standard such as 'singular they' has (yet) emerged, it rather seeks to emphasize the diversity of chosen strategies and their relation to a person's specific identity as well as the context an exchange takes place. The findings of the study may offer an insight into how heavily gendered languages deal with non-normatively gendered experiences, and to what extent English influences this process (e.g., the majority of genderqueer poles choose English terms to label their identity), as well as help design good practices aimed at achieving gender-equality in speech.

Keywords: genderqueer, grammatical gender in Polish, non-binary, transgender

Procedia PDF Downloads 139
3994 Rate, Indication and Outcome of Operative Vaginal Delivery at Mayo University Hospital 2022

Authors: Mohammed Mustafa, Fatima Abusin, Mariam Abufatema

Abstract:

Objective: This audit aims to evaluate the practices and outcomes of operative vaginal deliveries (OPVD) at Mayo University Hospital, focusing on identifying trends, complications, and adherence to clinical guidelines. Methods: A retrospective review was conducted on all cases of operative vaginal deliveries at Mayo University Hospital over one year. Data was collected from patient records, including demographics, OPVD indications, types of instruments used (forceps or vacuum), maternal and neonatal outcomes, and any associated complications. Statistical analyses were performed to assess the rates of successful and unsuccessful OPVDs and identify factors influencing outcomes. Results: The study included 159 [out of 174 total OPVD in 1 year] cases of operative vaginal deliveries. The indications predominantly consisted of the prolonged second stage of labor, fetal distress and suspicious CTG. The success rate of OVD was [97.5%]; maternal perineal tears [10 cases], hemorrhage[43 cases] and neonatal outcomes needed for SCBU admission[12 cases] were also assessed. Conclusion: This audit provides insights into the current practices and outcomes of operative vaginal deliveries at Mayo University Hospital. The findings underline the importance of adherence to clinical guidelines and highlight areas for potential improvement in practice

Keywords: OPVD operative vaginal delivery, GTG green top guidelines, PPH postpartum hemorrhage, SCBU special care baby unit

Procedia PDF Downloads 5
3993 Mediating Health in Rural Ghana: An Exploratory Study of AI-Driven Health Communications Channels and Media Reportage in Accra

Authors: Amos Ekow Coffie

Abstract:

This exploratory study investigates the impact of AI-driven health communications and media reportage on health outcomes in rural Ghana, focusing on rural communities within Accra. Despite the potential of AI-driven health communications in improving health outcomes, its adoption in rural Ghana is hindered by infrastructure challenges, digital literacy, and cultural factors. Media reportage plays a crucial role in shaping health perceptions and behaviors, but its impact is limited by inadequate health reporting, lack of specialized health journalists, and limited access to health information. This study aims to explore the integration of AI-driven health communications into media practices in rural Ghana, addressing the following research questions: How do AI-driven health communications impact health outcomes in rural Ghana? What role does media reportage play in shaping health perceptions and behaviors in Accra? How can AI-driven health communications and media reportage be optimized to improve health outcomes in rural Ghana? Using a mixed-methods approach, this study will combine surveys, interviews, and content analysis to investigate the impact of AI-driven Health Communication and media reportage on health outcomes in rural areas in Ghana. AI-driven health communications is the use of artificial intelligence (AI) technologies to design, deliver, and evaluate health messages, interventions, and campaigns. The study's findings will contribute to the development of effective health communication strategies, addressing the significant health disparities in rural areas in Ghana.

Keywords: AI Driven Health Communication, Media Reporting, Rural Areas, Communication Channels

Procedia PDF Downloads 25
3992 The Impact of Maternity Leave Reforms: Evidence from Finland

Authors: Claudia Troccoli

Abstract:

Childbearing constitutes one of the key factors affecting labour market differences between men and women, accounting for almost a quarter of the gender wage gap. Family leave policies, such as maternity, paternity, and parental leave, represent potential key policy tools to address these inequalities, as they can promote mothers' job continuity and career progression. This paper analyses four major reforms implemented in Finland between the 1960s and the early 1980s. It studies the effects of these maternity and parental leave extensions on mothers' short- and long-run labour market outcomes. Eligibility to longer leave was determined on the basis of the child's date of birth. Therefore, estimation of the causal effects of the reforms is possible by exploiting random variation in children's birthdates and comparing the outcomes of mothers giving birth just before and just after the reform cutoff date. Overall, the three maternity leave reforms did not significantly improve mothers' earnings or employment rates. On the contrary, the estimates, although imprecise, seem to indicate negative effects on women's labour market outcomes. The extension of parental leave is, on the other hand, the only reform that improved mothers' short- and long-term labour market outcomes, both in terms of earnings and employment rate. At the same time, fathers appeared to be negatively affected by the reform. These results provide suggestive evidence that shareable parental leave might have more beneficial effects on mothers' job continuity, as it weakens the connotation of childcare as a task reserved for mothers.

Keywords: family policies, Finland, maternal labour market outcomes, maternity leave

Procedia PDF Downloads 137
3991 Measuring Fundamental Growth Needs in a Youth Boatbuilding Context

Authors: Shane Theunissen, Rob Grandy

Abstract:

Historically and we would fairly conventionally within our formal schooling systems, we have convergent testing where all the students are expected to converge on the same answer, and that answer has been determined by an external authority that is reproducing knowledge of the hegemon. Many youths may not embody the cultural capital that's rewarded in formal schooling contexts as they aren't able to converge on the required answer that's being determined by the classroom teacher or the administrators. In this paper, we explore divergent processes that promote creative problem-solving. We embody this divergent process in our measurement of fundamental growth needs. To this end, we utilize the Mosaic Approach as a method for implementing the Outcomes That Matter framework. Outcomes That Matter is the name of the measurement tool built around the Circle of Courage framework, which is a way of identifying fundamental growth needs for young people. The Circle of Courage was developed by Martin-Broken-Leg and colleagues as a way to connect indigenous child-rearing philosophies with contemporary resilience and positive psychology research. The Outcomes that Matter framework puts forward four categories of growth needs for young people. These are: Belonging, which on a macro scale is acceptance into the greater community of practice, Mastery which includes a constellation of concepts including confidence, motivation, self-actualization, and self-determination, Independence refers to a sense of personal power into autonomy within a context where creativity and problem solving, and a personal voice can begin to emerge, and finally Generosity which includes interpersonal things like conflict resolution and teamwork. Outcomes of Matter puts these four domains into a measurement tool that facilitates collaborative assessment between the youth, teachers, and recreation therapists that allows for youth-led narratives pertaining to their fundamental growth outcomes. This application of the Outcomes That Matter framework is unique as it may be the first application of this framework in an educational boatbuilding context.

Keywords: collaboration, empowerment, outcomes that matter, mosaic approach, boat building

Procedia PDF Downloads 97
3990 Implementation of Successive Interference Cancellation Algorithms in the 5g Downlink

Authors: Mokrani Mohamed Amine

Abstract:

In this paper, we have implemented successive interference cancellation algorithms in the 5G downlink. We have calculated the maximum throughput in Frequency Division Duplex (FDD) mode in the downlink, where we have obtained a value equal to 836932 b/ms. The transmitter is of type Multiple Input Multiple Output (MIMO) with eight transmitting and receiving antennas. Each antenna among eight transmits simultaneously a data rate of 104616 b/ms that contains the binary messages of the three users; in this case, the Cyclic Redundancy Check CRC is negligible, and the MIMO category is the spatial diversity. The technology used for this is called Non-Orthogonal Multiple Access (NOMA) with a Quadrature Phase Shift Keying (QPSK) modulation. The transmission is done in a Rayleigh fading channel with the presence of obstacles. The MIMO Successive Interference Cancellation (SIC) receiver with two transmitting and receiving antennas recovers its binary message without errors for certain values of transmission power such as 50 dBm, with 0.054485% errors when the transmitted power is 20dBm and with 0.00286763% errors for a transmitted power of 32 dBm(in the case of user 1) as well as with 0.0114705% errors when the transmitted power is 20 dBm also with 0.00286763% errors for a power of 24 dBm(in the case of user2) by applying the steps involved in SIC.

Keywords: 5G, NOMA, QPSK, TBS, LDPC, SIC, capacity

Procedia PDF Downloads 103