Search results for: South Africa’s higher education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19423

Search results for: South Africa’s higher education

1603 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 141
1602 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times

Authors: John Dimopoulos

Abstract:

This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.

Keywords: design, hypermodernity, object-oriented ontology, weapon-being

Procedia PDF Downloads 152
1601 Athlete Coping: Personality Dimensions of Recovery from Injury

Authors: Randall E. Osborne, Seth A. Doty

Abstract:

As participation in organized sports increases, so does the risk of sustaining an athletic injury. These unfortunate injuries result in missed time from practice and, inevitably, the field of competition. Recovery time plays a pivotal role in the overall rehabilitation of the athlete. With time and rehabilitation, an athlete’s physical injury can be properly treated. However, there seem to be few measures assessing psychological recovery from injury. Although an athlete has been cleared to return to play, there may still be lingering doubt about their injury. Overall, there is a vast difference between being physically cleared to play and being psychologically ready to return to play. Certain personality traits might serve as predictors of an individual’s rate of psychological recovery from an injury. The purpose of this research study is to explore the correlations between athletes’ personality and their recovery from an athletic injury, specifically, examining how locus of control has been utilized through other studies and can be beneficial to the current study. Additionally, this section will examine the link between hardiness and coping strategies. In the current study, mental toughness is being tested, but it is important to determine the link between these two concepts. Hardiness and coping strategies are closely related and can play a major role in an athlete’s mental toughness. It is important to examine competitive trait anxiety to illustrate perceived anxiety during athletic competition. The Big 5 and Social Support will also be examined in conjunction with recovery from athletic injury. Athletic injury is a devastating and common occurrence that can happen in any sport. Injured athletes often require resources and treatment to be able to return to the field of play. Athletes become more involved with physical and mental treatment as the length of recovery time increases. It is very reasonable to assume that personality traits would be predictive of athlete recovery from injury. The current study investigated the potential relationship between personality traits and recovery time; more specifically, the personality traits of locus of control, hardiness, social support, competitive trait anxiety, and the “Big 5” personality traits. Results indicated that athletes with a higher internal locus of control tend to report being physically ready to return to play and “ready” to return to play faster than those with an external locus of control. Additionally, Openness to Experience (among the Big 5 personality dimensions) was also related to the speed of return to play.

Keywords: athlete, injury, personality, readiness to play, recovery

Procedia PDF Downloads 148
1600 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress

Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher

Abstract:

Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.

Keywords: green roof, plant cover, plant drought stress, rainfall retention

Procedia PDF Downloads 115
1599 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
1598 Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria

Authors: Alexander Chinyere Nwankpa, Nneka Ngozi Nwankpa

Abstract:

In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body.

Keywords: contamination, environment, radioactivity, radionuclides

Procedia PDF Downloads 104
1597 Underage Internal Migration from Rural to Urban Areas of Ethiopia: The Perspective of Social Marketing in Controlling Child Labor

Authors: Belaynesh Tefera, Ahmed Mohammed, Zelalem Bayisa

Abstract:

This study focuses on the issue of underage internal migration from rural to urban areas in Ethiopia, specifically in the context of child labor. It addresses the significant disparities in living standards between rural and urban areas, which motivate individuals from rural areas to migrate to urban areas in search of better economic opportunities. The study was conducted in Addis Ababa, where there is a high prevalence of underage internal migrants engaged in child labor due to extreme poverty in rural parts of the country. The aim of this study is to explore the life experiences of shoe-makers who have migrated from rural areas of Ethiopia to Addis Ababa. The focus is on understanding the factors that push these underage individuals to migrate, the challenges they face, and the implications for child labor. This study adopts a qualitative approach, using semistructured face-to-face interviews with underage migrants. A total of 27 interviews were conducted in Addis Ababa, Ethiopia, until the point of data saturation. The criteria for selecting interviewees include working as shoemakers and migrating to Addis Ababa underage, below 16 years old. The interviews were audio-taped, transcribed into Amharic, and then translated into English for analysis. The study reveals that the major push factors for underage internal migration are socioeconomic and environmental factors. Despite improvements in living standards for underage migrants and their families, there is a high prevalence of child labor and lack of access to education among them. Most interviewees migrated without the accompaniment of their family members and faced various challenges, including sleeping on the streets. This study highlights the role of social marketing in addressing the issues of underage internal migration and child labor. It suggests that social marketing can be an effective strategy to protect children from abuse, loneliness, and harassment during their migration process. The data collection involved conducting in-depth interviews with the underage migrants. The interviews were transcribed and translated for analysis. The analysis focused on identifying common themes and patterns within the interview data. The study addresses the factors contributing to underage internal migration, the challenges faced by underage migrants, the prevalence of child labor, and the potential role of social marketing in addressing these issues. The study concludes that although Ethiopia has policies against child internal migration, it is difficult to protect underage laborers who migrate from rural to urban areas due to the voluntary nature of their migration. The study suggests that social marketing can serve as a solution to protect children from abuse and other challenges faced during migration.

Keywords: underage, internal migration, social marketing, child labor, Ethiopia

Procedia PDF Downloads 79
1596 Analyzing the Commentator Network Within the French YouTube Environment

Authors: Kurt Maxwell Kusterer, Sylvain Mignot, Annick Vignes

Abstract:

To our best knowledge YouTube is the largest video hosting platform in the world. A high number of creators, viewers, subscribers and commentators act in this specific eco-system which generates huge sums of money. Views, subscribers, and comments help to increase the popularity of content creators. The most popular creators are sponsored by brands and participate in marketing campaigns. For a few of them, this becomes a financially rewarding profession. This is made possible through the YouTube Partner Program, which shares revenue among creators based on their popularity. We believe that the role of comments in increasing the popularity is to be emphasized. In what follows, YouTube is considered as a bilateral network between the videos and the commentators. Analyzing a detailed data set focused on French YouTubers, we consider each comment as a link between a commentator and a video. Our research question asks what are the predominant features of a video which give it the highest probability to be commented on. Following on from this question, how can we use these features to predict the action of the agent in commenting one video instead of another, considering the characteristics of the commentators, videos, topics, channels, and recommendations. We expect to see that the videos of more popular channels generate higher viewer engagement and thus are more frequently commented. The interest lies in discovering features which have not classically been considered as markers for popularity on the platform. A quick view of our data set shows that 96% of the commentators comment only once on a certain video. Thus, we study a non-weighted bipartite network between commentators and videos built on the sub-sample of 96% of unique comments. A link exists between two nodes when a commentator makes a comment on a video. We run an Exponential Random Graph Model (ERGM) approach to evaluate which characteristics influence the probability of commenting a video. The creation of a link will be explained in terms of common video features, such as duration, quality, number of likes, number of views, etc. Our data is relevant for the period of 2020-2021 and focuses on the French YouTube environment. From this set of 391 588 videos, we extract the channels which can be monetized according to YouTube regulations (channels with at least 1000 subscribers and more than 4000 hours of viewing time during the last twelve months).In the end, we have a data set of 128 462 videos which consist of 4093 channels. Based on these videos, we have a data set of 1 032 771 unique commentators, with a mean of 2 comments per a commentator, a minimum of 1 comment each, and a maximum of 584 comments.

Keywords: YouTube, social networks, economics, consumer behaviour

Procedia PDF Downloads 68
1595 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques

Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang

Abstract:

Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.

Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE

Procedia PDF Downloads 530
1594 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 138
1593 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 184
1592 Interventions for Children with Autism Using Interactive Technologies

Authors: Maria Hopkins, Sarah Koch, Fred Biasini

Abstract:

Autism is lifelong disorder that affects one out of every 110 Americans. The deficits that accompany Autism Spectrum Disorders (ASD), such as abnormal behaviors and social incompetence, often make it extremely difficult for these individuals to gain functional independence from caregivers. These long-term implications necessitate an immediate effort to improve social skills among children with an ASD. Any technology that could teach individuals with ASD necessary social skills would not only be invaluable for the individuals affected, but could also effect a massive saving to society in treatment programs. The overall purpose of the first study was to develop, implement, and evaluate an avatar tutor for social skills training in children with ASD. “Face Say” was developed as a colorful computer program that contains several different activities designed to teach children specific social skills, such as eye gaze, joint attention, and facial recognition. The children with ASD were asked to attend to FaceSay or a control painting computer game for six weeks. Children with ASD who received the training had an increase in emotion recognition, F(1, 48) = 23.04, p < 0.001 (adjusted Ms 8.70 and 6.79, respectively) compared to the control group. In addition, children who received the FaceSay training had higher post-test scored in facial recognition, F(1, 48) = 5.09, p < 0.05 (adjusted Ms: 38.11 and 33.37, respectively) compared to controls. The findings provide information about the benefits of computer-based training for children with ASD. Recent research suggests the value of also using socially assistive robots with children who have an ASD. Researchers investigating robots as tools for therapy in ASD have reported increased engagement, increased levels of attention, and novel social behaviors when robots are part of the social interaction. The overall goal of the second study was to develop a social robot designed to teach children specific social skills such as emotion recognition. The robot is approachable, with both an animal-like appearance and features of a human face (i.e., eyes, eyebrows, mouth). The feasibility of the robot is being investigated in children ages 7-12 to explore whether the social robot is capable of forming different facial expressions to accurately display emotions similar to those observed in the human face. The findings of this study will be used to create a potentially effective and cost efficient therapy for improving the cognitive-emotional skills of children with autism. Implications and study findings using the robot as an intervention tool will be discussed.

Keywords: autism, intervention, technology, emotions

Procedia PDF Downloads 381
1591 Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics

Authors: Komal Khan, Hafsa Zaneb, Saima Masood, Muhammad Younus, Sanan Raza

Abstract:

Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects.

Keywords: cigarette smoke, probiotics, goblet cells, airspace enlargement, BALF

Procedia PDF Downloads 364
1590 Extracorporeal Co2 Removal (Ecco2r): An Option for Treatment for Refractory Hypercapnic Respiratory Failure

Authors: Shweh Fern Loo, Jun Yin Ong, Than Zaw Oo

Abstract:

Acute respiratory distress syndrome (ARDS) is a common serious condition of bilateral lung infiltrates that develops secondary to various underlying conditions such as diseases or injuries. ARDS with severe hypercapnia is associated with higher ICU mortality and morbidity. Venovenous Extracorporeal membrane oxygenation (VV-ECMO) support has been established to avert life-threatening hypoxemia and hypercapnic respiratory failure despite optimal conventional mechanical ventilation. However, VV-ECMO is relatively not advisable in particular groups of patients, especially in multi-organ failure, advanced age, hemorrhagic complications and irreversible central nervous system pathology. We presented a case of a 79-year-old Chinese lady without any pre-existing lung disease admitted to our hospital intensive care unit (ICU) after acute presentation of breathlessness and chest pain. After extensive workup, she was diagnosed with rapidly progressing acute interstitial pneumonia with ARDS and hypercapnia respiratory failure. The patient received lung protective strategies of mechanical ventilation and neuromuscular blockage therapy as per clinical guidelines. However, hypercapnia respiratory failure was refractory, and she was deemed not a good candidate for VV-ECMO support given her advanced age and high vasopressor requirements from shock. Alternative therapy with extracorporeal CO2 removal (ECCO2R) was considered and implemented. The patient received 12 days of ECCO2R paired with muscle paralysis, optimization of lung-protective mechanical ventilation and dialysis. Unfortunately, the patient still had refractory hypercapnic respiratory failure with dual vasopressor support despite prolonged therapy. Given failed and futile medical treatment, the family opted for withdrawal of care, a conservative approach, and comfort care, which led to her demise. The effectivity of extracorporeal CO2 removal may depend on disease burden, involvement and severity of the disease. There is insufficient data to make strong recommendations about its benefit-risk ratio for ECCO2R devices, and further studies and data would be required. Nonetheless, ECCO2R can be considered an alternative treatment for refractory hypercapnic respiratory failure patients who are unsuitable for initiating venovenous ECMO.

Keywords: extracorporeal CO2 removal (ECCO2R), acute respiratory distress syndrome (ARDS), acute interstitial pneumonia (AIP), hypercapnic respiratory failure

Procedia PDF Downloads 65
1589 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening

Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan

Abstract:

Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.

Keywords: cytotoxicity, high-throughput, impedance, nanomaterials

Procedia PDF Downloads 362
1588 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane

Authors: Aziz Ghoufi, Ayman Kanaan

Abstract:

Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.

Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels

Procedia PDF Downloads 18
1587 Urban Compactness and Sustainability: Beijing Experience

Authors: Xilu Liu, Ameen Farooq

Abstract:

Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.

Keywords: Beijing, density, sustainability, urban compactness

Procedia PDF Downloads 424
1586 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading

Authors: Bineet Kumar

Abstract:

Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.

Keywords: fatigue life, fatigue, fracture, concrete

Procedia PDF Downloads 95
1585 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 520
1584 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria

Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene

Abstract:

As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.

Keywords: capacity, energy, power system, storage

Procedia PDF Downloads 34
1583 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 65
1582 The Investigation of Effectiveness of Different Concentrations of the Mycotoxin Detoxification Agent Added to Broiler Feed, in the Presence of T-2 Toxin, on Performance, Organ Mass and the Residues T-2 Toxin and His Metabolites in the Broiler Tissues

Authors: Jelena Nedeljković Trailović, Marko Vasiljević, Jog Raj, Hunor Farkaš, Branko Petrujkić, Stamen Radulović, Gorana Popvić

Abstract:

The experiment was performed on a total of 99 one-day-old broilers of Cob 500 provenance, which were divided into IX equal groups. Broilers of the E-I group were fed 0.25 mg T-2 toxin/kg feed, E-II and E-III groups 0.25 mg T-2 toxin/kg feed with the addition of 1 kg/t and 3 kg/t of the mycotoxin detoxification agent MDA, respectively. The E-IV group received 1 mg of T-2 toxin/kg of feed, and the broilers of E-V and E-VI groups received 1 mg of T-2 toxin/kg of feed with the addition of 1 kg/t and 3 kg/t of the MDA detoxification preparation, respectively. The E-VII group received commercial feed without toxins and additives, the E-VIII and E-IX groups received feed with 1kg/t and 3kg/t of the MDA detoxification preparation. The trial lasted 42 days. Observing the results obtained on the 42nd day of the experiment, we can conclude that the change in the absolute mass of the spleen occurred in the broilers of the E-IV group (1.66±0.14)g, which was statistically significantly lower compared to the broilers of the E-V and E-VI groups (2.58±0.15 and 2.68±0.23)g. Heart mass was significantly statistically lower in broilers of group E-IV (9.1±0.38)g compared to broilers of group E-V and E-VI (12.23±0.5 and 11.43±0.51)g. It can be concluded that the broilers that received 1 kg/t and 3 kg/t of the detoxification preparation had an absolute mass of organs within physiological limits. Broilers of the E-IV group achieved the lowest BM during the experiment (on the 42nd day of the experiment 1879±52.73)g, they were significantly statistically lower than the BW of broilers of all experimental groups. This trend is observed from the beginning to the end of the experiment. The protective effect of the detoxification preparation can be seen in broilers of the E-V group, that had a significantly statistically higher BM on the 42nd day of the experiment (2225±58.81)g compared to broilers of group E-IV. Broilers of E-VIII group (2452±46.71) g, which received commercial feed with the addition of 1 kg/t MDA preparation, had the highest BMI at the end of the experiment. At the end of the trial on the 42nd day, blood samples were collected from broilers of the experimental groups that received T-2 toxin and MR detoxification preparations in different concentrations. Also, liver and breast musculature samples were collected for testing for the presence and content of T-2 toxin, HT-2 toxin, T-2 tetraol and T-2 triol. Due to very rapid elimination from the blood, no remains of T-2 toxin and its metabolites were detected in the blood of broilers of groups E-I to E-VI. In the breast muscles, T-2 toxin residues below LoQ < 0.2 (μg/kg) were detected in all groups that received T-2 toxin in food, the highest value was recorded in the E-IV group (0.122 μg/kg and the lowest in E -VI group 0.096 μg/kg). No T-2 toxin residues were detected in the liver. Remains of HT-2 were detected in the breast muscles and livers of broilers from E-IV, E-V and E-VI groups, LoQ < 1 (μg/kg); for the breast muscles: 0.054, 0.044 and 0.041 μg/kg, and for the liver: 0.473, 0.231 and 0.185 μg/kg. Summing up all the results, a partial protective effect of the detoxification preparation, added to food in the amount of 1kg/t, can be seen.

Keywords: T-2 toxin, bloiler, MDA, mycotoxuns

Procedia PDF Downloads 85
1581 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis

Procedia PDF Downloads 204
1580 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School

Authors: Andrew Kipp

Abstract:

Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.

Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making

Procedia PDF Downloads 143
1579 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 198
1578 Ochratoxin-A in Traditional Meat Products from Croatian Households

Authors: Jelka Pleadin, Nina Kudumija, Ana Vulic, Manuela Zadravec, Tina Lesic, Mario Skrivanko, Irena Perkovic, Nada Vahcic

Abstract:

Products of animal origin, such as meat and meat products, can contribute to human mycotoxins’ intake coming as a result of either indirect transfer from farm animals exposed to naturally contaminated grains and feed (carry-over effects) or direct contamination with moulds or naturally contaminated spice mixtures used in meat production. Ochratoxin A (OTA) is mycotoxin considered to be of the outermost importance from the public health standpoint in connection with meat products. The aim of this study was to investigate the occurrence of OTA in different traditional meat products circulating on Croatian markets during 2018, produced by a large number of households situated in eastern and north Croatian regions using a variety of technologies. Concentrations of OTA were determined in traditional meat products (n = 70), including dry fermented sausages (Slavonian kulen, Slavonian sausage, Istrian sausage and domestic sausage; n = 28), dry-cured meat products (pancetta, pork rack and ham; n = 22) and cooked sausages (liver sausages, black pudding sausages and pate; n = 20). OTA was analyzed by use of quantitative screening immunoassay method (ELISA) and confirmed for positive samples (higher than the limit of detection) by liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Whereas the bacon samples contaminated with OTA were not found, its level in dry fermented sausages ranged from 0.22 to 2.17 µg/kg and in dry-cured meat products from 0.47 to 5.35 µg/kg, with in total 9% of positive samples. Besides possible primary contamination of these products arising due to improper manufacturing or/and storage conditions, observed OTA contamination could also be the consequence of secondary contamination that comes as a result of contaminated feed the animals were fed on. OTA levels obtained in cooked sausages ranged from 0.32 to 4.12 µg/kg (5% of positives) and could probably be linked to the contaminated raw materials (liver, kidney and spices) used in the sausages production. The results showed an occasional OTA contamination of traditional meat products, pointing that to avoid such contamination on households these products should be produced and processed under standardized and well-controlled conditions. Further investigations should be performed in order to identify mycotoxin-producing moulds on the surface of the products and to define preventative measures that can reduce the contamination of traditional meat products during their production on households and period of storage.

Keywords: Croatian households, ochratoxin-A, traditional cooked sausages, traditional dry-cured meat products

Procedia PDF Downloads 193
1577 The Role of Islamic Finance and Socioeconomic Factors in Financial Inclusion: A Cross Country Comparison

Authors: Allya Koesoema, Arni Ariani

Abstract:

While religion is only a very minor factor contributing to financial exclusion in most countries, the World Bank 2014 Global Financial Development Report highlighted it as a significant barrier for having a financial account in some Muslim majority countries. This is in part due to the perceived incompatibility between traditional financial institutions practices and Islamic finance principles. In these cases, the development of financial institutions and products that are compatible with the principles of Islamic finance may act as an important lever to increasing formal account ownership. However, there is significant diversity in the relationship between a country’s proportion of Muslim population and its level of financial inclusion. This paper combines data taken from the Global Findex Database, World Development Indicators, and the Pew Research Center to quantitatively explore the relationship between individual and country level religious and socioeconomic factor to financial inclusion. Results from regression analyses show a complex relationship between financial inclusion and religion-related factors in the population both on the individual and country level. Consistent with prior literature, on average the percentage of Islamic population positively correlates with the proportion of unbanked populations who cites religious reasons as a barrier to getting an account. However, its impact varies across several variables. First, a deeper look into countries’ religious composition reveals that the average negative impact of a large Muslim population is not as strong in more religiously diverse countries and less religious countries. Second, on the individual level, among the unbanked, the poorest quintile, least educated, older and the female populations are comparatively more likely to not have an account because of religious reason. Results also show indications that in this case, informal mechanisms partially substitute formal financial inclusion, as indicated by the propensity to borrow from family and friends. The individual level findings are important because the demographic groups that are more likely to cite religious reasons as barriers to formal financial inclusion are also generally perceived to be more vulnerable socially and economically and may need targeted attention. Finally, the number of Islamic financial institutions in a particular country is negatively correlated to the propensity of religious reasons as a barrier to financial inclusion. Importantly, the number of financial institutions in a country also mitigates the negative impact of the proportion of Muslim population, low education and individual age to formal financial inclusion. These results point to the potential importance of Islamic Finance Institutions in increasing global financial inclusion, and highlight the potential importance of looking beyond the proportion of Muslim population to other underlying institutional and socioeconomic factor in maximizing its impact.

Keywords: cross country comparison, financial inclusion, Islamic banking and finance, quantitative methods, socioeconomic factors

Procedia PDF Downloads 192
1576 Drug Susceptibility and Genotypic Assessment of Mycobacterial Isolates from Pulmonary Tuberculosis Patients in North East Ethiopia

Authors: Minwuyelet Maru, Solomon Habtemariam, Endalamaw Gadissa, Abraham Aseffa

Abstract:

Background: Tuberculosis is a major public health problem in Ethiopia. The burden of TB is aggravated by emergence and expansion of drug resistant tuberculosis and different lineages of Mycobacterium tuberculosis (M. tuberculosis) have been reported in many parts of the country. Describing strains of Mycobacterial isolates and drug susceptibility pattern is necessary. Method: Sputum samples were collected from smear positive pulmonary TB patients age >= 7 years between October 1, 2012 to September 30, 2013 and Mycobacterial strains isolated on Loweensten Jensen (LJ) media. Each strain was characterized by deletion typing and Spoligotyping. Drug sensitivity testing was determined with the indirect proportion method using Middle brook 7H10 media and association to determine possible risk factors to drug resistance was done. Result: A total of 144 smear positive pulmonary tuberculosis patients were enrolled. The age of participants ranged from 7 to 78 with mean age of 29.22 (±10.77) years. In this study 82.2% (n=97) of the isolates were sensitive to the four first line anti-tuberculosis drugs and resistance to any of the four drugs tested was 17.8% (n=21). A high frequency of any resistance was observed in isoniazid, 13.6%, (n=16) followed by streptomycin, 11.8% (n=14). No significant association of isoniazid resistance with HIV, sex and history of previous TB treatment was observed but there was significant association with age, high between 31-35 years of age (p=0.01). Majority, 89.9% (n=128) of participants were new cases and only 11.1% (n=16) had history of previous TB treatment. No MDR-TB from new cases and 2 MDRTB (13.3%) was isolated from re-treatment cases which was significantly associated with previous TB treatment (p<0.01). Thirty two different types of spoligotype patterns were identified and 74.1% were grouped in to 13 clusters. The dominant strains were SIT 25, 18.1% (n=21), SIT 53, 17.2% (n=20) and SIT 149, 8.6% (n=10). Lineage 4 is the predominant lineage followed by lineage 3 and lineage 7 comprising 65.5% (n=76), 28.4% (n=33) and 6% (n=7) respectively. Majority of strains from lineage 3 and 4 were SIT 25 (63.6%) and SIT 53 (26.3%) whereas SIT 343 was the dominant strain from lineage 7 (71.4%). Conclusion: Wide spread of lineage 3 and lineage 4 of the modern lineage and high number of strain cluster indicates high ongoing transmission. The high proportion resistance to any of the first line anti-tuberculosis drugs may be a potential source in the emergence of MDR-TB. Wide spread of SIT 25 and SIT 53 having a tendency of ease transmission and presence of higher resistance of isoniazid in working and mobile age group, 31-35 years of age may increase risk of drug resistant strains transmission.

Keywords: tuberculosis, drug susceptibility, strain diversity, lineage, Ethiopia, spoligotyping

Procedia PDF Downloads 375
1575 Short Association Bundle Atlas for Lateralization Studies from dMRI Data

Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara

Abstract:

Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.

Keywords: dMRI, hierarchical clustering, lateralization index, tractography

Procedia PDF Downloads 331
1574 In Vitro Fermentation Of Rich In B-glucan Pleurotus Eryngii Mushroom: Impact On Faecal Bacterial Populations And Intestinal Barrier In Autistic Children

Authors: Georgia Saxami, Evangelia N. Kerezoudi, Evdokia K. Mitsou, Marigoula Vlassopoulou, Georgios Zervakis, Adamantini Kyriacou

Abstract:

Autism Spectrum Disorder (ASD) is a complex group of developmental disorders of the brain, characterized by social and communication dysfunctions, stereotypes and repetitive behaviors. The potential interaction between gut microbiota (GM) and autism has not been fully elucidated. Children with autism often suffer gastrointestinal dysfunctions, while alterations or dysbiosis of GM have also been observed. Treatment with dietary components has been postulated to regulate GM and improve gastrointestinal symptoms, but there is a lack of evidence for such approaches in autism, especially for prebiotics. This study assessed the effects of Pleurotus eryngii mushroom (candidate prebiotic) and inulin (known prebiotic compound) on gut microbial composition, using faecal samples from autistic children in an in vitro batch culture fermentation system. Selected members of GM were enumerated at baseline (0 h) and after 24 h fermentation by quantitative PCR. After 24 h fermentation, inulin and P. eryngii mushroom induced a significant increase in total bacteria and Faecalibacterium prausnitzii compared to the negative control (gut microbiota of each autistic donor with no carbohydrate source), whereas both treatments induced a significant increase in levels of total bacteria, Bifidobacterium spp. and Prevotella spp. compared to baseline (t=0h) (p for all <0.05). Furthermore, this study evaluated the impact of fermentation supernatants (FSs), derived from P. eryngii mushroom or inulin, on the expression levels of tight junctions’ genes (zonulin-1, occludin and claudin-1) in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Pre-incubation of Caco-2 cells with FS from P. eryngii mushroom led to a significant increase in the expression levels of zonulin-1, occludin and claudin-1 genes compared to the untreated cells, the cells that were subjected to LPS and the cells that were challenged with FS from negative control (p for all <0.05). In addition, incubation with FS from P. eryngii mushroom led to the highest mean expression values for zonulin-1 and claudin-1 genes, which differed significantly compared to inulin (p for all <0.05). Overall, this research highlighted the beneficial in vitro effects of P. eryngii mushroom on the composition of GM of autistic children after 24 h of fermentation. Also, our data highlighted the potential preventive effect of P. eryngii FSs against dysregulation of the intestinal barrier, through upregulation of tight junctions’ genes associated with the integrity and function of the intestinal barrier. This research has been financed by "Supporting Researchers with Emphasis on Young Researchers - Round B", Operational Program "Human Resource Development, Education and Lifelong Learning."

Keywords: gut microbiota, intestinal barrier, autism spectrum disorders, Pleurotus Eryngii

Procedia PDF Downloads 166