Search results for: statistical correlations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4687

Search results for: statistical correlations

2947 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 431
2946 Changes in Skin Microbiome Diversity According to the Age of Xian Women

Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An

Abstract:

Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.

Keywords: next generation sequencing, age, Xian, skin microbiome

Procedia PDF Downloads 155
2945 The Relation Between Social Capital and Trust with Social Network Analysis (SNA)

Authors: Safak Baykal

Abstract:

The purpose of this study is analyzing the relationship between self leadership and social capital of people with using Social Network Analysis. In this study, two aspects of social capital will be focused: bonding, homophilous social capital (BoSC) which implies better, strong, dense or closed network ties, and bridging, heterophilous social capital (BrSC) which implies weak ties, bridging the structural holes. The other concept of the study is Trust (Tr), namely interpersonal trust, willingness to ascribe good intentions to and have confidence in the words and actions of other people. In this study, the sample group, 61 people, was selected from a private firm from the defense industry. The relation between BoSC/BrSC and Tr is shown by using Social Network Analysis (SNA) and statistical analysis with Likert type-questionnaire. The results of the analysis show the Cronbach’s alpha value is 0.73 and social capital values (BoSC/BrSC) is highly correlated with Tr values of the people.

Keywords: bonding social capital, bridging social capital, trust, social network analysis (SNA)

Procedia PDF Downloads 529
2944 A Simulation Model to Analyze the Impact of Virtual Responsiveness in an E-Commerce Supply Chain

Authors: T. Godwin

Abstract:

The design of a supply chain always entails the trade-off between responsiveness and efficiency. The launch of e-commerce has not only changed the way of shopping but also altered the supply chain design while trading off efficiency with responsiveness. A concept called ‘virtual responsiveness’ is introduced in the context of e-commerce supply chain. A simulation model is developed to compare actual responsiveness and virtual responsiveness to the customer in an e-commerce supply chain. The simulation is restricted to the movement of goods from the e-tailer to the customer. Customer demand follows a statistical distribution and is generated using inverse transformation technique. The two responsiveness schemes of the supply chain are compared in terms of the minimum number of inventory required at the e-tailer to fulfill the orders. Computational results show the savings achieved through virtual responsiveness. The insights gained from this study could be used to redesign e-commerce supply chain by incorporating virtual responsiveness. A part of the achieved cost savings could be passed back to the customer, thereby making the supply chain both effective and competitive.

Keywords: e-commerce, simulation modeling, supply chain, virtual responsiveness

Procedia PDF Downloads 344
2943 LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model

Authors: Yan-Ren Chen, Jenn-Kaie Lain

Abstract:

This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation.

Keywords: indoor positioning, received signal strength, trilateration, visible light communications

Procedia PDF Downloads 412
2942 A Comparative Assessment Method For Map Alignment Techniques

Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar

Abstract:

In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.

Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion

Procedia PDF Downloads 119
2941 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
2940 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 72
2939 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
2938 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
2937 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt

Authors: Naglaa Baskhroun Thabet Wasef

Abstract:

Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.

Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude

Procedia PDF Downloads 64
2936 Thai Primary School Teachers’ Attitude and Preparedness to Teach Students with Autism in the General Education Classroom

Authors: Sunanta Klibthong

Abstract:

Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behaviour was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, Thailand

Procedia PDF Downloads 276
2935 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 361
2934 Identifying Common Sports Injuries in Karate and Presenting a Model for Preventing Identified Injuries (A Case Study of East Azerbaijan, Iranian Karatekas)

Authors: Nadia Zahra Karimi Khiavi, Amir Ghiami Rad

Abstract:

Due to the high likelihood of injuries in karate, karatekas' injuries warrant special treatment. This study explores the prevalence of karate injuries in East Azerbaijan, Iran and provides a model for karatekas to use in the prevention of such injuries. This study employs a descriptive approach. Male and female participants with a brown belt or above in either control or non-control styles in East Azerbaijan province are included in the study's statistical population. A statistical sample size of 100 people was computed using the tools employed (smartpls), and the samples were drawn at random from all clubs in the province with the assistance of the Karate Board in order to give a model for the prevention of karate injuries. Information was gathered by means of a survey that made use of the Standard Questionnaire for Australian Sports Medicine Injury Reports. The information is presented in the form of tables and samples, and descriptive statistics were used to organise and summarise the data. Control and non-control independent t-tests were conducted using SPSS version 20, and structural equation modelling (pls) was utilised for injury prevention modelling at a 0.05 level of significance. The results showed that the most common areas of injury among the control groups were the upper limbs (46.15%), lower limbs (34.61%), trunk (15.38%), and head and neck (3.84%). The most common types of injuries were broken bones (34.61%), sprain or strain (23.13%), bruising and contusions (23.13%), trauma to the face and mouth (11.53%), and damage to the nerves (69.69%). Uncontrolled committees are most likely to sustain injuries to the head and neck (33.33%), trunk (25.92%), upper limbs (22.22%), and lower limbs (18.51%). The most common injuries were to the mouth and face (33.33%), dislocations and fractures (22.22%), aspirin and strain (22.22%), bruises and contusions (18.51%), and nerves (70%), in that order. Among those who practice control kata, injuries to the upper limb account for 45.83%, the lower limb for 41.666%, the trunk for 8.33%, and the head and neck for 4.166%. The most common types of injuries are dislocations and fractures (41.66 per cent), aspirin and strain (29.16 per cent), bruising and bruises (16.66 per cent), and nerves (12.5%). Injuries to the face and mouth were not reported among those practising the control kata. By far, the most common sites of injury for those practising uncontrolled kata were the lower limb (43.74%), upper limb (39.13%), trunk (13.14%), and head and neck (4.34%). The most common types of injuries were dislocations and fractures (34.82%), aspirin and strain (26.08%), bruises and contusions (21.73%), mouth and face (13.14%), and nerves. Teaching the concepts of cooling and warming (0.591) and enhancing the degree of safety in the sports environment (0.413) were shown to play the most essential roles in reducing sports injuries among karate practitioners of controlling and uncontrolled styles, respectively. Use of common sports gear (0.390), Modification of training programme principles (0.341), Formulation of an effective diet plan for athletes (0.284), Evaluation of athletes' physical anatomy, physiology, chemistry, and physics (0.247).

Keywords: sports injuries, karate, prevention, cooling and warming

Procedia PDF Downloads 101
2933 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 67
2932 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: augmented reality, multimedia, user interface, engineering, education technology

Procedia PDF Downloads 575
2931 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 76
2930 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello

Abstract:

Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.

Keywords: facial action coding system, COVID-19, masks, facial analysis

Procedia PDF Downloads 79
2929 Athlete Coping: Personality Dimensions of Recovery from Injury

Authors: Randall E. Osborne, Seth A. Doty

Abstract:

As participation in organized sports increases, so does the risk of sustaining an athletic injury. These unfortunate injuries result in missed time from practice and, inevitably, the field of competition. Recovery time plays a pivotal role in the overall rehabilitation of the athlete. With time and rehabilitation, an athlete’s physical injury can be properly treated. However, there seem to be few measures assessing psychological recovery from injury. Although an athlete has been cleared to return to play, there may still be lingering doubt about their injury. Overall, there is a vast difference between being physically cleared to play and being psychologically ready to return to play. Certain personality traits might serve as predictors of an individual’s rate of psychological recovery from an injury. The purpose of this research study is to explore the correlations between athletes’ personality and their recovery from an athletic injury, specifically, examining how locus of control has been utilized through other studies and can be beneficial to the current study. Additionally, this section will examine the link between hardiness and coping strategies. In the current study, mental toughness is being tested, but it is important to determine the link between these two concepts. Hardiness and coping strategies are closely related and can play a major role in an athlete’s mental toughness. It is important to examine competitive trait anxiety to illustrate perceived anxiety during athletic competition. The Big 5 and Social Support will also be examined in conjunction with recovery from athletic injury. Athletic injury is a devastating and common occurrence that can happen in any sport. Injured athletes often require resources and treatment to be able to return to the field of play. Athletes become more involved with physical and mental treatment as the length of recovery time increases. It is very reasonable to assume that personality traits would be predictive of athlete recovery from injury. The current study investigated the potential relationship between personality traits and recovery time; more specifically, the personality traits of locus of control, hardiness, social support, competitive trait anxiety, and the “Big 5” personality traits. Results indicated that athletes with a higher internal locus of control tend to report being physically ready to return to play and “ready” to return to play faster than those with an external locus of control. Additionally, Openness to Experience (among the Big 5 personality dimensions) was also related to the speed of return to play.

Keywords: athlete, injury, personality, readiness to play, recovery

Procedia PDF Downloads 148
2928 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program

Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany

Abstract:

We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.

Keywords: action learning, behavior, leadership development, Theory-U

Procedia PDF Downloads 195
2927 Gear Wear Product Analysis as Applied for Tribological Maintenance Diagnostics

Authors: Surapol Raadnui

Abstract:

This paper describes an experimental investigation on a pair of gears in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back-to-back spur gear test rig was used. The test samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs was assessed with the utilization of the statistical design of the experiment. It can be deduced that wear debris characteristics exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss.

Keywords: tribology, spur gear wear, predictive maintenance, wear particle analysis

Procedia PDF Downloads 251
2926 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 323
2925 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 246
2924 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 250
2923 Faults in the Projects, Deviation in the Cost

Authors: S. Ahmed, P. Dlask, B. Hasan

Abstract:

There are several ways to estimate the cost of the construction project: simple and detailed. The process of estimating cost is usually done during the design stage, which should take long-time and the designer must give attention to all details. This paper explain the causes of the deviations occurring in the cost of the construction project, and determines the reasons of these differences between contractual cost and final cost of the construction project, through the study of literature review related to this field, and benefiting from the experience of workers in the field of building (owners, contractors) through designing a questionnaire, and finding the most ten important reasons and explain the relation between the contractual cost and the final cost according to these reasons. The difference between those values will be showed through diagrams drawn using the statistical program. In addition to studying the effects of overrun costs on the advancing of the project, and identify the most five important effects. According to the results, we can propose the right direction for the final cost evaluation and propose some measures that would help to control and adjust the deviation in the costs.

Keywords: construction projects, building, cost, estimating costs, delay, overrun

Procedia PDF Downloads 294
2922 Ideal School of the Future from the Parents´ View: Quantitative Research of Faculty of Education of the University of Hradec Králové

Authors: Yveta Pohnětalová

Abstract:

The topic of possible forms of future schools according to rapid changes of life in the 21st century has become to reach several economic and social prognoses. In our research, we have tried to find out what the future school form is according to pupils’ parent’s view. School is a part of life of each person and based on own experience there is a certain individual picture created about a possible look of future education. The aim of our quantitative research was to find out how parents of first grade primary school pupils see the ideal school of the future. The quantitative research realized at the Faculty of Education of the University of Hradec Králové (Czech Republic). By statistical analysis of gained data from 120 respondents, there have been several views of schools of future identified in terms of mission and also the way of education. But a common indicator according to addressed parents would be more focused on the overall personality development rather than the field practice which is related to a realistic idea that school of the future is not and will not be the only source of education.

Keywords: parents’ approach, school of the future, survey, ways of education

Procedia PDF Downloads 237
2921 Dynamic Conformal Arc versus Intensity Modulated Radiotherapy for Image Guided Stereotactic Radiotherapy of Cranial Lesion

Authors: Chor Yi Ng, Christine Kong, Loretta Teo, Stephen Yau, FC Cheung, TL Poon, Francis Lee

Abstract:

Purpose: Dynamic conformal arc (DCA) and intensity modulated radiotherapy (IMRT) are two treatment techniques commonly used for stereotactic radiosurgery/radiotherapy of cranial lesions. IMRT plans usually give better dose conformity while DCA plans have better dose fall off. Rapid dose fall off is preferred for radiotherapy of cranial lesions, but dose conformity is also important. For certain lesions, DCA plans have good conformity, while for some lesions, the conformity is just unacceptable with DCA plans, and IMRT has to be used. The choice between the two may not be apparent until each plan is prepared and dose indices compared. We described a deviation index (DI) which is a measurement of the deviation of the target shape from a sphere, and test its functionality to choose between the two techniques. Method and Materials: From May 2015 to May 2017, our institute has performed stereotactic radiotherapy for 105 patients treating a total of 115 lesions (64 DCA plans and 51 IMRT plans). Patients were treated with the Varian Clinac iX with HDMLC. Brainlab Exactrac system was used for patient setup. Treatment planning was done with Brainlab iPlan RT Dose (Version 4.5.4). DCA plans were found to give better dose fall off in terms of R50% (R50% (DCA) = 4.75 Vs R50% (IMRT) = 5.242) while IMRT plans have better conformity in terms of treatment volume ratio (TVR) (TVR(DCA) = 1.273 Vs TVR(IMRT) = 1.222). Deviation Index (DI) is proposed to better facilitate the choice between the two techniques. DI is the ratio of the volume of a 1 mm shell of the PTV and the volume of a 1 mm shell of a sphere of identical volume. DI will be close to 1 for a near spherical PTV while a large DI will imply a more irregular PTV. To study the functionality of DI, 23 cases were chosen with PTV volume ranged from 1.149 cc to 29.83 cc, and DI ranged from 1.059 to 3.202. For each case, we did a nine field IMRT plan with one pass optimization and a five arc DCA plan. Then the TVR and R50% of each case were compared and correlated with the DI. Results: For the 23 cases, TVRs and R50% of the DCA and IMRT plans were examined. The conformity for IMRT plans are better than DCA plans, with majority of the TVR(DCA)/TVR(IMRT) ratios > 1, values ranging from 0.877 to1.538. While the dose fall off is better for DCA plans, with majority of the R50%(DCA)/ R50%(IMRT) ratios < 1. Their correlations with DI were also studied. A strong positive correlation was found between the ratio of TVRs and DI (correlation coefficient = 0.839), while the correlation between the ratio of R50%s and DI was insignificant (correlation coefficient = -0.190). Conclusion: The results suggest DI can be used as a guide for choosing the planning technique. For DI greater than a certain value, we can expect the conformity for DCA plans to become unacceptably great, and IMRT will be the technique of choice.

Keywords: cranial lesions, dynamic conformal arc, IMRT, image guided radiotherapy, stereotactic radiotherapy

Procedia PDF Downloads 241
2920 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 250
2919 Determination of Burnout Levels and Associated Factors of Teachers Working During the COVID-19 Pandemic Period

Authors: Kemal Kehan, Emine Aktas Bajalan

Abstract:

This study was carried out to determine the burnout levels and related factors of teachers working in primary schools affiliated to the Turkish Republic of Northern Cyprus (TRNC) Ministry of National Education during the COVID-19 pandemic period. The research was conducted in descriptive cross-sectional design. The population of the research consists of 1071 teachers working in 93 primary schools in 6 central districts affiliated to the TRNC Ministry of National Education in the 2021-2022 academic year. When the sample size of the study was calculated by power analysis, it was determined that 202 teachers should be reached with 95% confidence (1-α), 95% test power (1-β) and d=0.5 effect size. Within the scope of the inclusion criteria of the research, the main sample of the study consisted of 300 teachers and the baist random sampling method was used. The data were collected using the Sociodemographic Data Form consisting of 34 questions, including the sociodemographic characteristics of the teachers and the 22-item Maslach Burnout Scale (MBS). The analysis of the data was carried out using descriptive and correlational analyzes in the SPSS 22 package program. In the study, it was determined that 65% of the teachers were women, 68% were married, 84% had a bachelor's degree, 70.33% had children, and 67.67% were dependents. Regarding how teachers evaluate the COVID-19 pandemic period; 90% of them said, “I am worried about my family's health and the risk of infection”, 80% of them, “I feel that my profession does not get the value it deserves”, 75.67% of them mentioned “My hopes for the future have started to wane”, 75.33% of them say “I am worried about my own health”. It was determined that they gave the answer of, “I am worried about the issue”. It was found that the teachers' MBS total score average was 48.63±8.01, the burnout level was moderate, and the average score they got from the sub-dimensions of the scale was also moderate. It has been found that there are negative correlations between the professional satisfaction scores of the teachers during and before the COVID-19 pandemic and the scores they received from the general and sub-dimensions of MBS. It was determined that there was a statistically significant difference (p<0.05) between the scores of teachers diagnosed with COVID-19 from the scale and its sub-dimensions. As a result, it is suggested that social activities should be increased and professional development and promotion opportunities should be offered in order to ensure that teachers are satisfied with their work areas, to reduce their burnout levels or to prevent them completely.

Keywords: teachers, burnout, maslach burnout scale, pandemic, online education

Procedia PDF Downloads 65
2918 Correlates of Tourism and Power Alleviation: A Case Study of Osun Osogbo

Authors: Mohood A. Bamidele, Fadairo O. Olokesunsi, Muhammed A. Yunus

Abstract:

This research work focuses on tourism and poverty alleviation in Osun State, it delves in the tourism resources of the state and strategic framework that has been put in place to manage the cultural base tourism that is most prominent in the state. The major instrument used for data collection was questionnaire which was designed for the area and data collected were analyzed using statistical table and chi-square analysis. The result revealed that tourism is under development in Osun State and the tourism potential of the state is yet to be exploited, this is due to lack of appropriate policy to master the development and management of tourism resources, poor publicity, awareness, and lack of adequate basic infrastructure. The research work, therefore, recommended, that, there should be proper and appropriate policy, and that the government should take a leading step to develop tourism in Osun State by creating a workable environment to the private sector and given a substantial budgetary allocation to the tourism in the state.

Keywords: appropriate policy, poor publicity, poverty alleviation, substantial budgetary allocation

Procedia PDF Downloads 292