Search results for: stainless steel casting
269 Numerical Study of Jet Impingement Heat Transfer
Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal
Abstract:
Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.Keywords: CFD, heat transfer, impinging jets, numerical simulation
Procedia PDF Downloads 235268 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation
Authors: Swanand Patil, Pankaj Agarwal
Abstract:
In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation
Procedia PDF Downloads 345267 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent
Procedia PDF Downloads 374266 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project
Authors: Debasis Sarkar
Abstract:
Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail
Procedia PDF Downloads 474265 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate
Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue
Abstract:
The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action
Procedia PDF Downloads 81264 Vitrification and Devitrification of Chromium Containing Tannery Ash
Authors: Savvas Varitis, Panagiotis Kavouras, George Kaimakamis, Eleni Pavlidou, George Vourlias, Konstantinos Chrysafis, Philomela Komninou, Theodoros Karakostas
Abstract:
Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment.Keywords: chromium containing tannery ash, glass ceramic materials, thermal processing, vitrification
Procedia PDF Downloads 367263 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project
Authors: Kanagarajah Ravishankar
Abstract:
This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design
Procedia PDF Downloads 138262 Experimental and Theoretical Investigation of Slow Reversible Deformation of Concrete in Surface-Active Media
Authors: Nika Botchorishvili, Olgha Giorgishvili
Abstract:
Many-year investigations of the nature of damping creep of rigid bodies and materials led to the discovery of the fundamental character of this phenomenon. It occurs only when a rigid body comes in contact with a surface-active medium (liquid or gaseous), which brings about a decrease of the free surface energy of a rigid body as a result of adsorption, chemo-sorption or wetting. The reversibility of the process consists of a gradual disappearance of creep deformation when the action of a surface-active medium stops. To clarify the essence of processes, a physical model is constructed by using Griffith’s scheme and the well-known representation formulas of deformation origination and failure processes. The total creep deformation is caused by the formation and opening of microcracks throughout the material volume under the action of load. This supposedly happens in macroscopically homogeneous silicate and organic glasses, while in polycrystals (tuff, gypsum, steel) contacting with a surface-active medium micro crack are formed mainly on the grain boundaries. The creep of rubber is due to its swelling activated by stress. Acknowledgment: All experiments are financially supported by Shota Rustaveli National Science Foundation of Georgia. Study of Properties of Concretes (Both Ordinary and Compacted) Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building. DP2016_26. 22.12.2016.Keywords: process reversibility, surface-active medium, Rebinder’s effect, micro crack, creep
Procedia PDF Downloads 135261 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique
Authors: Bashar Tarawneh, Yasser Hakam
Abstract:
Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.Keywords: compaction, RIC, ground improvement, CPT
Procedia PDF Downloads 365260 Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium
Authors: Huseyin Zengin, Muhammet Emre Turan, Yunus Turen, Hayrettin Ahlatci, Yavuz Sun
Abstract:
This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably.Keywords: microalloyed steels, prior austenite grains, second phase particles, grain coarsening temperature
Procedia PDF Downloads 265259 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring
Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong
Abstract:
In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system
Procedia PDF Downloads 191258 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.Keywords: seismic assessment, pushover analysis, ambient vibration, modal update
Procedia PDF Downloads 390257 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures
Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz
Abstract:
Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.Keywords: direct shear, shear strength, slag, UU test
Procedia PDF Downloads 479256 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 82255 Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods
Authors: Mayoorika Shukla, Pramila Jakhar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference.Keywords: biosensors, defects, KMnO4, ZnO nanorods
Procedia PDF Downloads 282254 Design and Analysis of a Lightweight Fire-Resistant Door
Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 89253 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection
Authors: Mogens Saberi
Abstract:
The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions
Procedia PDF Downloads 384252 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening
Procedia PDF Downloads 292251 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack
Authors: Rita Greco, Giuseppe Carlo Marano
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment
Procedia PDF Downloads 320250 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers
Authors: Naohiro Nakamura
Abstract:
Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper
Procedia PDF Downloads 190249 Structural Performance Evaluation of Concrete Beams Reinforced with Recycled and Virgin Plastic Fibres
Authors: Vighnesh Daas, David B. Tann, Mahmood Datoo
Abstract:
The incorporation of recycled plastic fibres in concrete as reinforcement is a potential sustainable alternative for replacement of ordinary steel bars. It provides a scope for waste reduction and re-use of plastics in the construction industry on a large scale. Structural use of fibre reinforced concrete is limited to short span members and low reliability classes. In this study, recycled carpet fibres made of 95% polypropylene with length of 45mm were used for experimental investigations. The performance of recycled polypropylene fibres under structural loading has been compared with commercially available virgin fibres at low volume fractions of less than 1%. A series of 100 mm cubes and 125x200x2000 mm beams were used to conduct strength tests in bending and compression to measure the influence of type and volume of fibres on the structural behaviour of fibre reinforced concrete beams. The workability of the concrete mix decreased as a function of fibre content and resulted in a modification of the mix design. The beams failed in a pseudo-ductile manner with an enhanced bending capacity. The specimens showed significant improvement in the post-cracking behaviour and load carrying ability as compared to conventional reinforced concrete members. This was associated to the binding properties of the fibres in the concrete matrix. With the inclusion of fibres at low volumes of 0-0.5%, there was reduction in crack sizes and deflection. This study indicates that the inclusion of recycled polypropylene fibres at low volumes augments the structural behaviour of concrete as compared to conventional reinforced concrete as well as virgin fibre reinforced concrete.Keywords: fibre reinforced concrete, polypropylene, recycled, strength
Procedia PDF Downloads 247248 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 304247 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System
Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu
Abstract:
The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.Keywords: fatigue, test rig, crack initiation, life, rail, squats
Procedia PDF Downloads 515246 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer
Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang
Abstract:
Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network
Procedia PDF Downloads 323245 Corrosion Behvaior of CS1018 in Various CO2 Capture Solvents
Authors: Aida Rafat, Ramazan Kahraman, Mert Atilhan
Abstract:
The aggressive corrosion behavior of conventional amine solvents is one of main barriers against large scale commerizaliation of amine absorption process for carbon capture application. Novel CO2 absorbents that exhibit minimal corrosivity against operation conditions are essential to lower corrosion damage and control and ensure more robustness in the capture plant. This work investigated corrosion behavior of carbon steel CS1018 in various CO2 absrobent solvents. The tested solvents included the classical amines MEA, DEA and MDEA, piperazine activated solvents MEA/PZ, MDEA/PZ and MEA/MDEA/PZ as well as mixtures of MEA and Room Temperature Ionic Liquids RTIL, namely MEA/[C4MIM][BF4] and MEA/[C4MIM][Otf]. Electrochemical polarization technique was used to determine the system corrosiveness in terms of corrosion rate and polarization behavior. The process parameters of interest were CO2 loading and solution temperature. Electrochemical resulted showed corrosivity order of classical amines at 40°C is MDEA> MEA > DEA wherase at 80°C corrosivity ranking changes to MEA > DEA > MDEA. Corrosivity rankings were mainly governed by CO2 absorption capacity at the test temperature. Corrosivity ranking for activated amines at 80°C was MEA/PZ > MDEA/PZ > MEA/MDEA/PZ. Piperazine addition seemed to have a dual advanatge in terms of enhancing CO2 absorption capacity as well as nullifying corrosion. For MEA/RTIL mixtures, the preliminary results showed that the partial repalcement of aqueous phase in MEA solution by the more stable nonvolatile RTIL solvents reduced corrosion rates considerably.Keywords: corrosion, amines, CO2 capture, piperazine, ionic liquids
Procedia PDF Downloads 460244 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I
Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas
Abstract:
Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.Keywords: chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, slurry infiltrated fiber concrete
Procedia PDF Downloads 136243 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control
Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy
Abstract:
This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element
Procedia PDF Downloads 621242 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement
Authors: Abtin Farokhipanah
Abstract:
In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient
Procedia PDF Downloads 354241 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 365240 Transgression, Resistance and Independent Art in Russia
Authors: Oxana Vasilyeva
Abstract:
This paper draws on research in progress focusing on independent art in the Russian Federation. I am using the concept of independent art to mean art free from state control and established restrictive narratives. The Russian state pursues its interests by supporting or forbidding certain forms of art, and art that promotes values in opposition to the official political course is often forbidden. Arguments presented below draw from fieldwork carried out in Russian cities of Moscow and Saint Petersburg in June – August 2019, which included in-depth interviews with artists. This research explores socially engaged artistic works and their effect on socio-political state of affairs. It argues that artistic works entering public places have a potential to challenge autocratic system and inspire civil society to be critically engaged and to be capable to resist state propaganda. I am focusing on those artists who have a critical stance towards the current Russian political regime and analyzing their works in terms of transgression. By using the framework of transgression I aim to demonstrate how artists step across existing norms with their art influencing political and social order. To show the connection between the factors mentioned above, I will turn to two examples of transgressive aesthetics; one is individual and another is collective. The first example is Konstantin Benkovich, an artist who makes his works out of steel rebar, which is considered to be a symbol of the lack of freedom, as it is usually encountered in prison settings. The second example is a collective art practice called Monstration. It combines techniques of a demonstration and a carnival atmosphere. In 2019 Monstration was held in 30 Russian cities, despite the dissatisfaction of the authorities.Keywords: art, culture, resistance, Russia
Procedia PDF Downloads 125