Search results for: silicon solar cell
3636 Evaluation of Alternative Energy Sources for Energy Production in Turkey
Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen
Abstract:
In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy
Procedia PDF Downloads 6283635 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation
Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi
Abstract:
This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF
Procedia PDF Downloads 2693634 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure
Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen
Abstract:
At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine
Procedia PDF Downloads 4013633 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium
Authors: Binbin Chen, Dennis Y. C. Leung
Abstract:
Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge
Procedia PDF Downloads 2833632 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal
Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis
Abstract:
Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma
Procedia PDF Downloads 1363631 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment
Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang
Abstract:
Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia
Procedia PDF Downloads 463630 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 2953629 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection
Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev
Abstract:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.Keywords: Parkinson's disease, mutations, mitophagy, autophagy
Procedia PDF Downloads 1953628 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems
Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib
Abstract:
We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.Keywords: thin films, photovoltaic, hybrid systems, heterojunction
Procedia PDF Downloads 2753627 Electrical Properties of CVD-Graphene on SiC
Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault
Abstract:
In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide
Procedia PDF Downloads 6653626 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation
Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs
Abstract:
Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming
Procedia PDF Downloads 8073625 Renewable Energy and Hydrogen On-Site Generation for Drip Irrigation and Agricultural Machinery
Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo, F. Javier García-Ramos
Abstract:
The energy used in agriculture is a source of global emissions of greenhouse gases. The two main types of this energy are electricity for pumping and diesel for agricultural machinery. In order to reduce these emissions, the European project LIFE REWIND addresses the supply of this demand from renewable sources. First of all, comprehensive data on energy demand and available renewable resources have been obtained in several case studies. Secondly, a set of simulations and optimizations have been performed, in search of the best configuration and sizing, both from an economic and emission reduction point of view. For this purpose, it was used software based on genetic algorithms. Thirdly, a prototype has been designed and installed, that it is being used for the validation in a real case. Finally, throughout a year of operation, various technical and economic parameters are being measured for further analysis. The prototype is not connected to the utility grid, avoiding the cost and environmental impact of a grid extension. The system includes three kinds of photovoltaic fields. One is located on a fixed structure on the terrain. Another one is floating on an irrigation raft. The last one is mounted on a two axis solar tracker. Each has its own solar inverter. The total amount of nominal power is 44 kW. A lead acid battery with 120 kWh of capacity carries out the energy storage. Three isolated inverters support a three phase, 400 V 50 Hz micro-grid, the same characteristics of the utility grid. An advanced control subsystem has been constructed, using free hardware and software. The electricity produced feeds a set of seven pumps used for purification, elevation and pressurization of water in a drip irrigation system located in a vineyard. Since the irrigation season does not include the whole year, as well as a small oversize of the generator, there is an amount of surplus energy. With this surplus, a hydrolyser produces on site hydrogen by electrolysis of water. An off-road vehicle with fuel cell feeds on that hydrogen and carries people in the vineyard. The only emission of the process is high purity water. On the one hand, the results show the technical and economic feasibility of stand-alone renewable energy systems to feed seasonal pumping. In this way, the economic costs, the environmental impacts and the landscape impacts of grid extensions are avoided. The use of diesel gensets and their associated emissions are also avoided. On the other hand, it is shown that it is possible to replace diesel in agricultural machinery, substituting it for electricity or hydrogen of 100% renewable origin and produced on the farm itself, without any external energy input. In addition, it is expected to obtain positive effects on the rural economy and employment, which will be quantified through interviews.Keywords: drip irrigation, greenhouse gases, hydrogen, renewable energy, vineyard
Procedia PDF Downloads 3403624 Biological Activities of Flaxseed Peptides (Linusorbs)
Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney
Abstract:
Flaxseed (Linum usitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. The flax plant synthesizes an array of biologically active cyclic peptides or linusorbs (LOs, a.k.a. cyclolinopeptides) from three or more ribosome-derived precursors. [1–9-NαC]-linusorb B3 and [1–9-NαC]-linusorb B2, suppress immunity, induce apoptosis in human epithelial cancer cell line (Calu-3) cells, and inhibit T-cell proliferation, but the mechanism of LOs action is unknown. Using gene expression analysis in nematode cultures and human cancer cell lines, we have observed that LOs exert their activity, in part, through induction of apoptosis. Specific LOs’ properties include: 1) distribution throughout the body after flaxseed consumption; 2) induce heat shock protein (HSP) 70A production as an indicator of stress and address the issue in Caenorhabditis elegans (exposure of nematode cultures to [1–9-NαC]-linusorb B3 induced a 30% increase in production of the HSP 70A protein); 3) induce apoptosis in Calu-3 cells; and 4) modulate regulatory genes in microarray analysis. These diverse activities indicate that LOs might induce apoptosis in cancer cells or act as versatile platforms to deliver a variety of biologically active molecules for cancer therapy.Keywords: flaxseed, linusorb, cyclic peptide, orbitides, heat shock protein, apoptosis, anti-cancer
Procedia PDF Downloads 1353623 Mathematical Simulation of Performance Parameters of Pulse Detonation Engine
Authors: Subhash Chander, Tejinder Kumar Jindal
Abstract:
Due to its simplicity, Pulse detonation engine technology has recently emerged as a future aerospace propulsion technology. In this paper, we studied various parameters affecting the performance of Pulse detonation engine (PDE) like tube length for proper deflagration to detonation transition (DDT), tube diameter (combustion tube), tube length, Shelkin spiral, Cell size, Equivalence ratio of fuel used etc. We have discussed various techniques for reducing the length of pulse tube by using various DDT enhancing devices. The effect of length of the tube from 40 mm to 3000 mm and diameter from 10 mm to 100 mm has been analyzed. The fuel used is C2H2 and oxidizer is O2. The results are processed in MATLAB for drawing valid conclusions.Keywords: pulse detonation engine (PDE), deflagration to detonation (DDT), Schelkin spiral, cell size (λ)
Procedia PDF Downloads 5703622 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 1433621 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 3123620 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 2953619 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification
Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee
Abstract:
Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel
Procedia PDF Downloads 2533618 Autophagy Regulates Human Hepatocellular Carcinoma Tumorigenesis through Selective Degradation of Cyclin D1
Authors: Shan-Ying Wu, Sheng-Hui Lan, Xi-Zhang Lin, Ih-Jen Su, Ting-Fen Tsai, Chia-Jui Yen, Tsung-Hsueh Lu, Fu-Wen Liang, Huey-Jen Su, Chun-Li Su, Hsiao-Sheng Liu
Abstract:
In hepatocelluar carcinoma (HCC), dysregulated expression of cyclin D1 and impaired autophagy has been reported separately. However, the relationship between them has not been explored. In this study, we demonstrated that autophagy was inversely correlated with cyclin D1 expression in 147 paired HCC patient specimens. HCC specimen with highly expression of cyclin D1 shows correlation with poor overall survival rate. Furthermore, induction of autophagy by amiodarone (antiarrhythmic drug) in Hep 3B cells, cyclin D1 was recruited into autophagosomes demonstrated by immune-gold labeling of cyclin D1 after extraction of autophagosomes. We further demonstrated that autophagy suppresses Hep 3B cell proliferation, and further analysis revealed that cell cycle was arrested at G1 phase. The interaction between LC3 (maker of autophagy) and cyclin D1 was increased after autophagy induction. In addition, ubiquitinated-cyclin D1 was also increased after autophagy induction, which is selectively degraded by autophagosome through binding with SQSTM1/p62 (an adaptor protein). In vivo study showed that amiodarone induced autophagy suppresses liver tumor formation in xenograft mouse and orthotopic rat model through decreasing cyclin D1 expression and inhibition of cell proliferation. Altogether, we reveal a novel mechanism that ubiquitinated cyclin D1 degraded by autophagic pathway by p62 and amiodarone is a promising drug for targeting cyclin D1 in liver cancer therapy.Keywords: autophagy, cyclin D1, hepatocellular carcinoma, amiodarone
Procedia PDF Downloads 2943617 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract
Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali
Abstract:
Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.Keywords: antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata
Procedia PDF Downloads 2423616 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters
Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi
Abstract:
Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment
Procedia PDF Downloads 1403615 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction
Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov
Abstract:
The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction
Procedia PDF Downloads 2343614 DOG1 Expression Is in Common Human Tumors: A Tissue Microarray Study on More than 15,000 Tissue Samples
Authors: Kristina Jansen, Maximilian Lennartz, Patrick Lebok, Guido Sauter, Ronald Simon, David Dum, Stefan Steurer
Abstract:
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types, including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n=1,002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p<0.0001) and the absence of HPV infection in squamous cell carcinomas (p=0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.Keywords: biomarker, DOG1, immunohistochemistry, tissue microarray
Procedia PDF Downloads 2143613 Adaptive Cooperative Scheme Considering the User Location
Authors: Bit-Na Kwon, Hyun-Jee Yang, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
In this paper, an adaptive cooperative scheme in the cell edge is proposed. The proposed scheme considers the location of a user and applies the suitable cooperative scheme. In cellular systems, the performance of communication is degraded if the user is located in the cell edge. In conventional scheme, two base stations are used in order to obtain diversity gain. However, the performance of communication is not sufficiently improved since the distance between each base station and a user is still distant. Therefore, we propose a scheme that the relays are used and the cooperative scheme is adaptively applied according to the user location. Through simulation results, it is confirmed that the proposed scheme has better performance than the conventional scheme.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5703612 The Creation of a Yeast Model for 5-oxoproline Accumulation
Authors: Pratiksha Dubey, Praveen Singh, Shantanu Sen Gupta, Anand K. Bachhawat
Abstract:
5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated.Keywords: 5-oxoproline, pyroglutamic acid, yeast, genetics
Procedia PDF Downloads 823611 The Effect of Size and Tumor Depth on Histological Clearance Margins of Basal Cell Carcinomas
Authors: Martin Van, Mohammed Javed, Sarah Hemington-Gorse
Abstract:
Aim: Our aim was to determine the effect of size and tumor depth of basal cell carcinomas (BCCs) on surgical margin clearance. Methods: A retrospective study was conducted at the Welsh Centre for Burns and Plastic Surgery (WCBPS), Morriston Hospital between 1 Jan 2016 – 31 July 2016. Only patients with confirmed BCC on histopathological analysis were included. Patient data including anatomical region treated, lesion size, histopathological clearance margins and histological sub-types were recorded. An independent T-test was performed determine statistical significance. Results: A total of 228 BCCs were excised in 160 patients. Eleven lesions (4.8%) were incompletely excised. The nose area had the highest rate of incomplete excision. The mean diameter of incompletely excised lesions was 11.4mm vs 11.5mm in completely excised lesions (p=0.959) and the mean histological depth of incompletely excised lesions was 4.1mm vs. 2.5mm for completely excised BCCs (p < 0.05). Conclusions: BCC tumor depth of > 4.1 mm was associated with high rate of incomplete margin clearance. Hence, in prospective patients, a BCC tumor depth (>4 mm) on tissue biopsy should alert the surgeon of potentially higher risk of incomplete excision of lesion.Keywords: basal cell carcinoma, excision margins, plastic surgery, treatment
Procedia PDF Downloads 2373610 Cytotoxic Activity of Parkia javanica Merr. and Parkia speciosa Hassk. against Human Cancer Cell Lines
Authors: Srisopa Ruangnoo, Arunporn Itharat
Abstract:
The ethanolic and aqueous extracts of Parkia javanica Merr. germinating seeds and Parkia speciosa Hassk. seeds were evaluated for cytotoxic activity against three different types of human cancer cell lines including colon cancer (LS174T), breast cancer (MCF-7) and prostate cancer (PC3) using sulforhodamine B (SRB) assay. The fresh plant parts were divided into 2 parts. The first part was extracted by maceration with 95% ethanol for 3 days and then filtered, and the filtrates were evaporated by rotary evaporator. The other part was squeezed and filtered. Then the filtrates were dried by freeze dryer. The screening found that the aqueous extract of P. javanica Merr. germinating seeds exhibited more than 70% inhibition (at concentration 50 µg/ml) against all types of human cancer cells. The aqueous extract of P. javanica Merr. germinating seeds showed the highest cytotoxic activity against MCF-7 with the IC50 value as 5.63 µg/ml. The aqueous extract of P. javanica Merr. germinating seeds also showed high cytotoxic activity against PC3 and LS174T with the IC50 values as 10.79 and 11.40 µg/ml, respectively. In conclusion, P. javanica Merr. germinating seed is a natural source of anticancer activity and further research to isolate active compounds from this plant should be undertaken.Keywords: cytotoxic activity, Parkia javanica Merr., Parkia speciosa Hassk., human cancer cell lines
Procedia PDF Downloads 4073609 Comparison of Physical and Chemical Effects on Senescent Cells
Authors: Svetlana Guryeva, Inna Kornienko, Andrey Usanov, Dmitry Usanov, Elena Petersen
Abstract:
Every day cells in our organism are exposed to various factors: chemical agents, reactive oxygen species, ionizing radiation, and others. These factors can cause damage to DNA, cellular membrane, intracellular compartments, and proteins. The fate of cells depends on the exposure intensity and duration. The prolonged and intense exposure causes the irreversible damage accumulation, which triggers the permanent cell cycle arrest (cellular senescence) or cell death programs. In the case of low dose of impacts, it can lead to cell renovation and to cell functional state improvement. Therefore, it is a pivotal question to investigate the factors and doses that result in described positive effects. In order to estimate the influence of different agents, the proliferation index and levels of cell death markers (annexin V/propidium iodide), senescence-associated β-galactosidase, and lipofuscin were measured. The experiments were conducted on primary human fibroblasts of the 8th passage. According to the levels of mentioned markers, these cells were defined as senescent cells. The effect of low-frequency magnetic field was investigated. Different modes of magnetic field exposure were tested. The physical agents were compared with chemical agents: metformin (10 mM) and taurine (0.8 mM and 1.6 mM). Cells were incubating with chemicals for 5 days. The highest decrease in the level of senescence-associated β-galactosidase (21%) and lipofuscin (17%) was observed in the primary senescent fibroblasts after 5 days after double treatments with 48 h intervals with low-frequency magnetic field. There were no significant changes in the proliferation index after magnetic field application. The cytotoxic effect of magnetic field was not observed. The chemical agent taurine (1.6 mM) decreased the level of senescence-associated β-galactosidase (23%) and lipofuscin (22%). Metformin improved the activity of senescence-associated β-galactosidase on 15% and the level of lipofuscin on 19% in this experiment. According to these results, the effect of double treatment with 48 h interval with low-frequency magnetic field and the effect of taurine (1.6 mM) were comparable to the effect of metformin, for which anti-aging properties are proved. In conclusion, this study can become the first step towards creation of the standardized system for the investigation of different effects on senescent cells.Keywords: biomarkers, magnetic field, metformin, primary fibroblasts, senescence, taurine
Procedia PDF Downloads 2783608 Designing of Multi-Epitope Peptide Vaccines for Fasciolosis (Fasciola gigantica) using Immune Epitope and Analysis Resource (IEDB) Server
Authors: Supanan Chansap, Werachon Cheukamud, Pornanan Kueakhai, Narin Changklungmoa
Abstract:
Fasciola species (Fasciola spp.) is caused fasciolosis in ruminants such as cattle, sheep, and buffalo. Fasciola gigantica (F.gigantica) commonly infects tropical regions. Fasciola hepatica (F.hepatica) in temperate regions. Liver fluke infection affects livestock economically, for example, reduced milk and meat production, weight loss, sterile animals. Currently, Triclabendazole is used to treat liver flukes. However, liver flukes have also been found to be resistant to drugs in countries. Therefore, vaccination is an attractive alternative to prevent liver fluke infection. Peptide vaccines are new vaccine technologies that mimic epitope antigens that trigger an immune response. An interesting antigen used in vaccine production is catepsin L, a family of proteins that play an important role in the life of the parasite in the host. This study aims to identify immunogenic regions of protein and construct a multi-epidetope vaccine using an immunoinformatic tool. Fasciola gigantica Cathepsin L1 (FgCatL1), Fasciola gigantica Cathepsin L1G (FgCatL1G), and Fasciola gigantica Cathepsin L1H (FgCatL1H) were predicted B-cell and Helper T lymphocytes (HTL) by Immune Epitope and Analysis Resource (IEDB) servers. Both B-cell and HTL epitopes aligned with cathepsin L of the host and Fasciola hepatica (F. hepatica). Epitope groups were selected from non-conserved regions and overlapping sequences with F. hepatica. All overlapping epitopes were linked with the GPGPG and KK linker. GPGPG linker was linked between B-cell epitope. KK linker was linked between HTL epitope and B-cell and HTL epitope. The antigenic scores of multi-epitope peptide vaccine was 0.7824. multi-epitope peptide vaccine was non-allergen, non-toxic, and good soluble. Multi-epitope peptide vaccine was predicted tertiary structure and refinement model by I-Tasser and GalaxyRefine server, respectively. The result of refine structure model was good quality that was generated by Ramachandran plot analysis. Discontinuous and linear B-cell epitopes were predicted by ElliPro server. Multi-epitope peptide vaccine model was two and seven of discontinuous and linear B-cell epitopes, respectively. Furthermore, multi-epitope peptide vaccine was docked with Toll-like receptor 2 (TLR-2). The lowest energy ranged from -901.3 kJ/mol. In summary, multi-epitope peptide vaccine was antigenicity and probably immune response. Therefore, multi-epitope peptide vaccine could be used to prevent F. gigantica infections in the future.Keywords: fasciola gigantica, Immunoinformatic tools, multi-epitope, Vaccine
Procedia PDF Downloads 763607 Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman
Authors: Surekha Tony, Roshan Mevada
Abstract:
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor.Keywords: genetic diagnosis, hematopoietic stem cell transplant, infant, Wiskott-Aldrich syndrome
Procedia PDF Downloads 17