Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26384

Search results for: linked data

24644 Architectural Design as Knowledge Production: A Comparative Science and Technology Study of Design Teaching and Research at Different Architecture Schools

Authors: Kim Norgaard Helmersen, Jan Silberberger

Abstract:

Questions of style and reproducibility in relation to architectural design are not only continuously debated; the very concepts can seem quite provocative to architects, who like to think of architectural design as depending on intuition, ideas, and individual personalities. This standpoint - dominant in architectural discourse - is challenged in the present paper presenting early findings from a comparative STS-inspired research study of architectural design teaching and research at different architecture schools in varying national contexts. In philosophy of science framework, the paper reflects empirical observations of design teaching at the Royal Academy of Fine Arts in Copenhagen and presents a tentative theoretical framework for the on-going research project. The framework suggests that architecture – as a field of knowledge production – is mainly dominated by three epistemological positions, which will be presented and discussed. Besides serving as a loosely structured framework for future data analysis, the proposed framework brings forth the argument that architecture can be roughly divided into different schools of thought, like the traditional science disciplines. Without reducing the complexity of the discipline, describing its main intellectual positions should prove fruitful for the future development of architecture as a theoretical discipline, moving an architectural critique beyond discussions of taste preferences. Unlike traditional science disciplines, there is a lack of a community-wide, shared pool of codified references in architecture, with architects instead referencing art projects, buildings, and famous architects, when positioning their standpoints. While these inscriptions work as an architectural reference system, to be compared to codified theories in academic writing of traditional research, they are not used systematically in the same way. As a result, architectural critique is often reduced to discussions of taste and subjectivity rather than epistemological positioning. Architects are often criticized as judges of taste and accused that their rationality is rooted in cultural-relative aesthetical concepts of taste closely linked to questions of style, but arguably their supposedly subjective reasoning, in fact, forms part of larger systems of thought. Putting architectural ‘styles’ under a loop, and tracing their philosophical roots, can potentially open up a black box in architectural theory. Besides ascertaining and recognizing the existence of specific ‘styles’ and thereby schools of thought in current architectural discourse, the study could potentially also point at some mutations of the conventional – something actually ‘new’ – of potentially high value for architectural design education.

Keywords: architectural theory, design research, science and technology studies (STS), sociology of architecture

Procedia PDF Downloads 134
24643 Role of Interlukin-18 in Primary Knee Osteoarthritis: Clinical, Laboratory and Radiological Study

Authors: Ibrahim Khalil Ibrahim, Enas Mohamed Shahine, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Ghada Salah Attia Hussein

Abstract:

Osteoarthritis (OA) is a multifactorial disease characterized by a progressive degradation of articular cartilage and is the leading cause of disability in elderly persons. IL-18 contributes to the destruction of cartilage and bone in the disease process of arthritis. The aim of the study was to investigate the role of IL-18 in primary knee OA patients. Serum level of IL-18 was assessed by enzyme-linked immunosorbent assay in 30 primary knee OA patients and compared to 20 age and gender-matched healthy volunteers as a control group. Radiographic severity of OA was assessed by Kellgren and Lawrence (KL) global scale. Pain, stiffness and functional assessment were done using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). OA patients had significantly higher serum IL-18 level than in control group (420.93 ± 345.4 versus 151.03 ± 144.16 pg/ml, P=0.001). Serum level of IL-18 was positively correlated with KL global scale (P=0.001). There were no statistically significant correlations between serum level of IL-18 and pain, stiffness, function subscales and total WOMAC index scores among the studied patients. In conclusions, IL-18 has a role in the pathogenesis of OA and it is positively correlated with the radiographic damage of OA.

Keywords: Interlukin-18, knee osteoarthritis, primary osteoarthritis, WOMAC scale

Procedia PDF Downloads 386
24642 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 289
24641 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 70
24640 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.

Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data

Procedia PDF Downloads 186
24639 ISIS Women Recruitment in Spain and De-Radicalization Programs in Prisons

Authors: Inmaculada Yuste Martinez

Abstract:

Since July 5, 2014, Abubaker al Bagdadi, leader of the Islamic State since 2010 climbed the pulpit of the Great Mosque of Al Nuri of Mosul and proclaimed the Caliphate, the number of fighters who have travelled to Syria to join the Caliphate has increased as never before. Although it is true that the phenomenon of foreign fighters is not a new phenomenon, as it occurred after the Spanish Civil War, Republicans from Ireland and the conflict of the Balkans among others, it is highly relevant the fact that in this case, it has reached figures unknown in Europe until now. The approval of the resolution 2178 (2014) of the Security Council, foreign terrorist fighters placed the subject a priority position on the International agenda. The available data allow us to affirm that women have increasingly assumed operative functions in jihadist terrorism and in the activities linked to it in the development of attacks in the European Union, including minors and young adults. In the case of Spain, one in four of the detainees in 2016 were women, a significant increase compared to 2015. This contrasts with the fact that until 2014 no woman had been prosecuted in Spain for terrorist activities of a jihadist nature. It is fundamental when we talk about the prevention of radicalization and counterterrorism that we do not underestimate the potential threat to the security of countries like Spain that women from the West can assume to the global jihadist movement. This work aims to deepen the radicalization processes of these women and their profiles influencing the female inmate population. It also wants to focus on the importance of creating de-radicalization programs for these inmates since women are a crucial element in radicalization processes. A special focus it is made on young radicalized female inmate population as this target group is the most recoverable and on which it would result more fruitful to intervene. De-radicalization programs must also be designed to fit their profiles and circumstances; a sensitive environment will be prisons and juvenile centers, areas that until now had been unrelated to this problem and which are already hosting the first convicted in judicial offices in Spanish territory. A qualitative research and an empirical and analytical method has been implemented in this work, focused on the cases that took place in Spain of young women and the imaginary that the Islamic State uses for the processes of radicalization for this target group and how it does not fit with their real role in the Jihad, as opposed to other movements in which women do have a real and active role in the armed conflict as YPJ do it as a part of the armed wing of the Democratic Union Party of Syria.

Keywords: caliphate, de-radicalization, foreign fighter, gender perspective, ISIS, jihadism, recruitment

Procedia PDF Downloads 173
24638 Effectiveness of ISSR Technique in Revealing Genetic Diversity of Phaseolus vulgaris L. Representing Various Parts of the World

Authors: Mohamed El-Shikh

Abstract:

Phaseolus vulgaris L. is the world’s second most important bean after soybeans; used for human food and animal feed. It has generally been linked to reduced risk of cardiovascular disease, diabetes mellitus, obesity, cancer and diseases of digestive tract. The effectiveness of ISSR in achievement of the genetic diversity among 60 common bean accessions; represent various germplasms around the world was investigated. In general, the studied Phaseolus vulgaris accessions were divided into 2 major groups. All of the South-American accessions were separated into the second major group. These accessions may have different genetic features that are distinct from the rest of the accessions clustered in the major group. Asia and Europe accessions (1-20) seem to be more genetically similar (99%) to each other as they clustered in the same sub-group. The American and African varieties showed similarities as well and clustered in the same sub-tree group. In contrast, Asian and American accessions No. 22 and 23 showed a high level of genetic similarities, although these were isolated from different regions. The phylogenetic tree showed that all the Asian accessions (along with Australian No. 59 and 60) were similar except Indian and Yemen accessions No. 9 and 20. Only Netherlands accession No. 3 was different from the rest of European accessions. Morocco accession No. 52 was genetically different from the rest of the African accessions. Canadian accession No. 44 seems to be different from the other North American accessions including Guatemala, Mexico and USA.

Keywords: phylogenetic tree, Phaseolus vulgaris, ISSR technique, genetics

Procedia PDF Downloads 414
24637 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 135
24636 Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering

Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: mercaptopropionic acid, chitosan-gold nanoshell, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 279
24635 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 122
24634 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 407
24633 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria

Authors: Ayodele Ajayi, John Ajayi

Abstract:

This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.

Keywords: corporate governance, banks performance, board size, pooled data

Procedia PDF Downloads 364
24632 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 97
24631 Haplotypes of the Human Leukocyte Antigen-G Different HIV-1 Groups from the Netherlands

Authors: A. Alyami, S. Christmas, K. Neeltje, G. Pollakis, B. Paxton, Z. Al-Bayati

Abstract:

The Human leukocyte antigen-G (HLA-G) molecule plays an important role in immunomodulation. To date, 16 untranslated regions (UTR) HLA-G haplotypes have been previously defined by sequenced SNPs in the coding region. From these, UTR-1, UTR-2, UTR-3, UTR-4, UTR-5, UTR-6 and UTR-7 are the most frequent 3’UTR haplotypes at the global level. UTR-1 is associated with higher levels of soluble HLA-G and HLA-G expression, whereas UTR-5 and UTR-7 are linked with low levels of soluble HLA-G and HLA-G expression. Human immunodeficiency virus type 1 (HIV-1) infection results in the progressive loss of immune function in infected individuals. The virus escape mechanism typically includes T lymphocytes and NK cell recognition and lyses by classical HLA-A and B down-regulation, which has been associated with non-classical HLA-G molecule up-regulation, respectively. We evaluated the haplotypes of the HLA-G 3′ untranslated region frequencies observed in three HIV-1 groups from the Netherlands and their susceptibility to develop infection. The three groups are made up of mainly men who have sex with men (MSM), injection drug users (IDU) and a high-risk-seronegative (HRSN) group. DNA samples were amplified with published primers prior sequencing. According to our results, the low expresser frequencies show higher in HRSN compared to other groups. This is indicating that 3’UTR polymorphisms may be identified as potential prognostic biomarkers to determine susceptibility to HIV.

Keywords: Human leukocyte antigen-G (HLA-G) , men who have sex with men (MSM), injection drug users (IDU), high-risk-seronegative (HRSN) group, high-untranslated region (UTR)

Procedia PDF Downloads 155
24630 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 142
24629 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster

Authors: Trapti Sharma, Devesh Kumar Srivastava

Abstract:

This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.

Keywords: hadoop, mapreduce, k-mediod, validation, verification

Procedia PDF Downloads 374
24628 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 193
24627 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"

Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam

Abstract:

CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.

Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software

Procedia PDF Downloads 70
24626 Prevalence of Cognitive Decline in Major Depressive Illness

Authors: U. B. Zubair, A. Kiyani

Abstract:

Introduction: Depressive illness predispose individuals to a lot of physical and mental health issues. Anxiety and substance use disorders have been studied widely as comorbidity. Biological symptoms also now considered part of the depressive spectrum. Cognitive abilities also decline or get affected and need to be looked into in detail in depressed patients. Objective: To determine the prevalence of cognitive decline among patients with major depressive illness and analyze the associated socio-demographic factors. Methods: 190 patients of major depressive illness were included in our study to determine the presence of cognitive decline among them. Depression was diagnosed by a consultant psychiatrist by using the ICD-10 criteria for major depressive disorder. British Columbia Cognitive Complaints Inventory (BC-CCI) was the psychometric tool used to determine the cognitive decline. Sociodemographic profile was recorded and the relationship of various factors with cognitive decline was also ascertained. Findings: 70% of the patients suffering from depression included in this study showed the presence of some degree of cognitive decline, while 30% did not show any evidence of cognitive decline when screened through BCCCI. Statistical testing revealed that the female gender was the only socio-demographic parameter linked significantly with the presence of cognitive decline. Conclusion: Decline in cognitive abilities was found in a significant number of patients suffering from major depression in our sample population. Screening for this parameter f mental function should be done in depression clinics to pick it early.

Keywords: depression, cognitive decline, prevalence, socio-demographic factors

Procedia PDF Downloads 149
24625 Ethical Artificial Intelligence: An Exploratory Study of Guidelines

Authors: Ahmad Haidar

Abstract:

The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.

Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI

Procedia PDF Downloads 97
24624 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 72
24623 A Conversational Chatbot for Cricket Analytics

Authors: Kishan Bharadwaj Shridhar

Abstract:

Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.

Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.

Procedia PDF Downloads 17
24622 Teachers’ Perceptions of the Negative Impact of Tobephobia on Their Emotions and Job Satisfaction

Authors: Prakash Singh

Abstract:

The aim of this study was to investigate the extent of teachers’ experiences of tobephobia (TBP) in their heterogeneous classrooms and what impact this had on their emotions and job satisfaction. The expansive and continuously changing demands for quality and equal education for all students in educational organisations that have limited resources connotes that the negative effects of TBP cannot be simply ignored as being non-existent in the educational environment. As this quantitative study reveals, teachers disliking their job with low expectations, lack of motivation in their workplace and pessimism, result in their low self-esteem. When there is pessimism in the workplace, then the employees’ self-esteem will inevitably be low, as pointed out by 97.1% of the respondents in this study. Self-esteem is a reliable indicator of whether employees are happy or not in their jobs and the majority of the respondents in this study agreed that their experiences of TBP negatively impacted on their self-esteem. Hence, this exploratory study strongly indicates that productivity in the workplace is directly linked to the employees’ expectations, self-confidence and their self-esteem. It is therefore inconceivable for teachers to be productive in their regular classrooms if their genuine professional concerns, anxieties, and curriculum challenges are not adequately addressed. This empirical study contributes to our knowledge on TBP because it clearly outlines some of the teaching problems that we are grappling with and constantly experience in our schools in this century. Therefore, it is imperative that the tobephobic experiences of teachers are not merely documented, but appropriately addressed with relevant action by every stakeholder associated with education so that our teachers’ emotions and job satisfaction needs are fully taken care of.

Keywords: demotivated teachers' pessimism, low expectations of teachers' job satisfaction, self-esteem, tobephobia

Procedia PDF Downloads 235
24621 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 580
24620 Does Citizens’ Involvement Always Improve Outcomes: Procedures, Incentives and Comparative Advantages of Public and Private Law Enforcement

Authors: Avdasheva Svetlanaa, Kryuchkova Polinab

Abstract:

Comparative social efficiency of private and public enforcement of law is debated. This question is not of academic interest only, it is also important for the development of the legal system and regulations. Generally, involvement of ‘common citizens’ in public law enforcement is considered to be beneficial, while involvement of interest groups representatives is not. Institutional economics as well as law and economics consider the difference between public and private enforcement to be rather mechanical. Actions of bureaucrats in government agencies are assumed to be driven by the incentives linked to social welfare (or other indicator of public interest) and their own benefits. In contrast, actions of participants in private enforcement are driven by their private benefits. However administrative law enforcement may be designed in such a way that it would become driven mainly by individual incentives of alleged victims. We refer to this system as reactive public enforcement. Citizens may prefer using reactive public enforcement even if private enforcement is available. However replacement of public enforcement by reactive version of public enforcement negatively affects deterrence and reduces social welfare. We illustrate the problem of private vs pure public and private vs reactive public enforcement models with the examples of three legislation subsystems in Russia – labor law, consumer protection law and competition law. While development of private enforcement instead of public (especially in reactive public model) is desirable, replacement of both public and private enforcement by reactive model is definitely not.

Keywords: public enforcement, private complaints, legal errors, competition protection, labor law, competition law, russia

Procedia PDF Downloads 497
24619 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 201
24618 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 184
24617 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 307
24616 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means

Procedia PDF Downloads 265
24615 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.

Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model

Procedia PDF Downloads 46