Search results for: images processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5650

Search results for: images processing

3910 Exploring the Impact of Eye Movement Desensitization and Reprocessing (EMDR) And Mindfulness for Processing Trauma and Facilitating Healing During Ayahuasca Ceremonies

Authors: J. Hash, J. Converse, L. Gibson

Abstract:

Plant medicines are of growing interest for addressing mental health concerns. Ayahuasca, a traditional plant-based medicine, has established itself as a powerful way of processing trauma and precipitating healing and mood stabilization. Eye Movement Desensitization and Reprocessing (EMDR) is another treatment modality that aids in the rapid processing and resolution of trauma. We investigated group EMDR therapy, G-TEP, as a preparatory practice before Ayahuasca ceremonies to determine if the combination of these modalities supports participants in their journeys of letting go of past experiences negatively impacting mental health, thereby accentuating the healing of the plant medicine. We surveyed 96 participants (51 experimental G-TEP, 45 control grounding prior to their ceremony; age M=38.6, SD=9.1; F=57, M=34; white=39, Hispanic/Latinx=23, multiracial=11, Asian/Pacific Islander=10, other=7) in a pre-post, mixed methods design. Participants were surveyed for demographic characteristics, symptoms of PTSD and cPTSD (International Trauma Questionnaire (ITQ), depression (Beck Depression Inventory, BDI), and stress (Perceived Stress Scale, PSS) before the ceremony and at the end of the ceremony weekend. Open-ended questions also inquired about their expectations of the ceremony and results at the end. No baseline differences existed between the control and experimental participants. Overall, participants reported a decrease in meeting the threshold for PTSD symptoms (p<0.01); surprisingly, the control group reported significantly fewer thresholds met for symptoms of affective dysregulation, 2(1)=6.776, p<.01, negative self-concept, 2 (1)=7.122, p<.01, and disturbance in relationships, 2 (1)=9.804, p<.01, on subscales of the ITQ as compared to the experimental group. All participants also experienced a significant decrease in scores on the BDI, t(94)=8.995, p<.001, and PSS, t(91)=6.892, p<.001. Similar to patterns of PTSD symptoms, the control group reported significantly lower scores on the BDI, t(65.115)=-2.587, p<.01, and a trend toward lower PSS, t(90)=-1.775, p=.079 (this was significant with a one-sided test at p<.05), compared to the experimental group following the ceremony. Qualitative interviews among participants revealed a potential explanation for these relatively higher levels of depression and stress in the experimental group following the ceremony. Many participants reported needing more time to process their experience to gain an understanding of the effects of the Ayahuasca medicine. Others reported a sense of hopefulness and understanding of the sources of their trauma and the necessary steps to heal moving forward. This suggests increased introspection and openness to processing trauma, therefore making them more receptive to their emotions. The integration process of an Ayahuasca ceremony is a week- to months-long process that was not accessible in this stage of research, yet it is an integral process to understanding the full effects of the Ayahuasca medicine following the closure of a ceremony. Our future research aims to assess participants weeks into their integration process to determine the effectiveness of EMDR, and if the higher levels of depression and stress indicate the initial reaction to greater awareness of trauma and receptivity to healing.

Keywords: ayahuasca, EMDR, PTSD, mental health

Procedia PDF Downloads 65
3909 Automatic Checkpoint System Using Face and Card Information

Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn

Abstract:

In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.

Keywords: face comparison, card recognition, OCR, checkpoint system, authentication

Procedia PDF Downloads 321
3908 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 658
3907 Production of Buttermilk as a Bio-Active Functional Food by Utilizing Dairy Waste

Authors: Hafsa Tahir, Sanaullah Iqbal

Abstract:

Glactooligosaccharide (GOS) is a type of prebiotic which is mainly found in human milk. GOS belongs to those bacteria which stimulates the growth of beneficial bacteria in human intestines. The aim of the present study was to develop a value-added product by producing prebiotic (GOS) in buttermilk through trans galactosylation. Buttermilk is considered as an industrial waste which is discarded after the production of butter and cream. It contains protein, minerals, vitamins and a smaller amount of fat. Raw milk was pasteurized at 100º C for butter production and then trans galactosylation process was induced in the butter milk thus obtained to produce prebiotic GOS. Results showed that the enzyme (which was obtained from bacterial strain of Esecrshia coli and has a gene of Lactobacillus reuteri L103) concentration between 400-600µl/5ml can produce GOS in 30 minutes. Chemical analysis and sensory evaluation of plain and GOS containing buttermilk showed no remarkable difference in their composition. Furthermore, the shelf-life study showed that there was non-significant (P>0.05) difference in glass and pouch packaging of buttermilk. Buttermilk in pouch packaging maintained its stability for 6 days without the addition of preservatives. Therefore it is recommended that GOS enriched buttermilk which is generally considered as a processing waste in dairy manufacturing can be turned into a cost-effective nutritional functional food product. This will not only enhance the production efficiency of butter processing but also will create a new market opportunity for dairy manufacturers all over the world.

Keywords: buttermilk, galactooligosaccharide, shelf Life, transgalactosylation

Procedia PDF Downloads 292
3906 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 337
3905 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 464
3904 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 138
3903 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys

Authors: Mechri hanane, Azzaz Mohammed

Abstract:

Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.

Keywords: nanomaterials, thin films, TEM, SEM

Procedia PDF Downloads 410
3902 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 133
3901 Vitrification and Devitrification of Chromium Containing Tannery Ash

Authors: Savvas Varitis, Panagiotis Kavouras, George Kaimakamis, Eleni Pavlidou, George Vourlias, Konstantinos Chrysafis, Philomela Komninou, Theodoros Karakostas

Abstract:

Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment.

Keywords: chromium containing tannery ash, glass ceramic materials, thermal processing, vitrification

Procedia PDF Downloads 367
3900 The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix

Authors: Noor Akhmazillah Fauzi, Mohammed Mehdi Farid, Filipa V. Silva

Abstract:

The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products.

Keywords: high pressure processing, honey, Saccharomyces cerevisiae, °Brix

Procedia PDF Downloads 353
3899 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 19
3898 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa

Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori

Abstract:

The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.

Keywords: agro-ecosystem, conventional farm, dialectical, sustainability

Procedia PDF Downloads 216
3897 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 408
3896 Exploring Language Attrition Through Processing: The Case of Mising Language in Assam

Authors: Chumki Payun, Bidisha Som

Abstract:

The Mising language, spoken by the Mising community in Assam, belongs to the Tibeto-Burman family of languages. This is one of the smaller languages of the region and is facing endangerment due to the dominance of the larger languages, like Assamese. The language is spoken in close in-group scenarios and is gradually losing ground to the dominant languages, partly also due to the education setup where schools use only dominant languages. While there are a number of factors for the current contemporary status of the language, and those can be studied using sociolinguistic tools, the current work aims to contribute to the understanding of language attrition through language processing in order to establish if the effect of second language dominance is more than mere ‘usage’ patterns and has an impact on cognitive strategies. When bilingualism spreads widely in society and results in a language shift, speakers perform people often do better in their second language (L2) than in their first language (L1) across a variety of task settings, in both comprehension and production tasks. This phenomenon was investigated in the case of Mising-Assamese bilinguals, using a picture naming task, in two districts of Jorhat and Tinsukia in Assam, where the relative dominance of L2 is slightly different. This explorative study aimed to investigate if the L2 dominance is visible in their performance and also if the pattern is different in the two different places, thus pointing to the degree of language loss in this case. The findings would have implications for native language education, as education in one’s mother tongue can help reverse the effect of language attrition helping preserve the traditional knowledge system. The hypothesis was that due to the dominance of the L2, subjects’ performance in the task would be better in Assamese than that of Missing. The experiment: Mising-Assamese bilingual participants (age ranges 21-31; N= 20 each from both districts) had to perform a picture naming task in which participants were shown pictures of familiar objects and asked to name them in four scenarios: (a) only in Mising; (b) only in Assamese; (c) a cued mix block: an auditory cue determines the language in which to name the object, and (d) non-cued mix block: participants are not given any specific language cues, but instructed to name the pictures in whichever language they feel most comfortable. The experiment was designed and executed using E-prime 3.0 and was conducted responses were recorded using the help of a Chronos response box and was recorded with the help of a recorder. Preliminary analysis reveals the presence of dominance of L2 over L1. The paper will present a comparison of the response latency, error analysis, and switch cost in L1 and L2 and explain the same from the perspective of language attrition.

Keywords: bilingualism, language attrition, language processing, Mising language.

Procedia PDF Downloads 23
3895 3D Stereoscopic Measurements from AR Drone Squadron

Authors: R. Schurig, T. Désesquelles, A. Dumont, E. Lefranc, A. Lux

Abstract:

A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used.

Keywords: drone squadron, flight control, rotorcraft, Unmanned Aerial Vehicle (UAV), AR drone, stereoscopic vision

Procedia PDF Downloads 473
3894 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 261
3893 Trust: The Enabler of Knowledge-Sharing Culture in an Informal Setting

Authors: Emmanuel Ukpe, S. M. F. D. Syed Mustapha

Abstract:

Trust in an organization has been perceived as one of the key factors behind knowledge sharing, mainly in an unstructured work environment. In an informal working environment, to instill trust among individuals is a challenge and even more in the virtual environment. The study has contributed in developing the framework for building trust in an unstructured organization in performing knowledge sharing in a virtual environment. The artifact called KAPE (Knowledge Acquisition, Processing, and Exchange) was developed for knowledge sharing for the informal organization where the framework was incorporated. It applies to Cassava farmers to facilitate knowledge sharing using web-based platform. A survey was conducted; data were collected from 382 farmers from 21 farm communities. Multiple regression technique, Cronbach’s Alpha reliability test; Tukey’s Honestly significant difference (HSD) analysis; one way Analysis of Variance (ANOVA), and all trust acceptable measures (TAM) were used to test the hypothesis and to determine noteworthy relationships. The results show a significant difference when there is a trust in knowledge sharing between farmers, the ones who have high in trust acceptable factors found in the model (M = 3.66 SD = .93) and the ones who have low on trust acceptable factors (M = 2.08 SD = .28), (t (48) = 5.69, p = .00). Furthermore, when applying Cognitive Expectancy Theory, the farmers with cognitive-consonance show higher level of trust and satisfaction with knowledge and information from KAPE, as compared with a low level of cognitive-dissonance. These results imply that the adopted trust model KAPE positively improved knowledge sharing activities in an informal environment amongst rural farmers.

Keywords: trust, knowledge, sharing, knowledge acquisition, processing and exchange, KAPE

Procedia PDF Downloads 120
3892 Modern Agriculture and Industrialization Nexus in the Nigerian Context

Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon, Olabanji Ewetan

Abstract:

Modern agriculture involves the use of improved tools and equipment (instead of crude and ineffective tools) like tractors, hand operated planters, hand operated fertilizer drills and combined harvesters - which increase agricultural productivity. Farmers in Nigeria still have huge potentials to enhance their productivity. The study argues that the increase in agricultural output due to increased productivity, orchestrated by modern agriculture will promote forward linkages and opportunities in the processing sub-sector; both the manufacturing of machines and the processing of raw materials. Depending on existing incentives, foreign investment could be attracted to augment local investment in the sector. The availability of raw materials in large quantity – which prices are competitive – will attract investment in other industries. In addition, potentials for backward linkages will also be created. In a nutshell, adopting the unbalanced growth theory in favour of the agricultural sector could engender industrialization in a country with untapped potentials. The paper highlights the numerous potentials of modern agriculture that are yet to be tapped in Nigeria and also provides a theoretical analysis of how the realization of such potentials could promote industrialization in the country. The study adopts the Lewis’ theory of structural–change model and Hirschman’s theory of unbalanced growth in the design of the analytical framework. The framework will be useful in empirical studies that will guide policy formulation.

Keywords: modern agriculture, industrialization, structural change model, unbalanced growth

Procedia PDF Downloads 304
3891 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 220
3890 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images

Authors: Jeena R. S., Sukesh Kumar A.

Abstract:

Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.

Keywords: prediction, retinal imaging, risk factors, stroke

Procedia PDF Downloads 304
3889 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 153
3888 The Effects of Blanching, Boiling and Steaming on Ascorbic Acid Content, Total Phenolic Content, and Colour in Cauliflowers (Brassica oleracea var. Botrytis)

Authors: Huei Lin Lee, Wee Sim Choo

Abstract:

The effects of blanching, boiling and steaming on the ascorbic acid content, total phenolic content and colour in cauliflower (Brassica oleraceavar. Botrytis) was investigated. It was found that blanching was the best thermal processing to be applied on cauliflower compared to boiling and steaming processes. Blanching and steaming processes on cauliflower retained most of the ascorbic acid content (AAC) compared to those of boiling. As for the total phenolic content (TPC), blanching process retained a higher TPC in cauliflower compared to those of boiling and steaming processes. There were no significant differences between the TPC of boiled and steamed cauliflowers. As for the colour measurement, there were no significant differences in the colour of the cauliflower at different lead time (after processing to the point of consumption) of 30 minutes interval up to 3 hours but there were slight variations in L*, a*, and b* values among the thermal processed cauliflowers (blanched, boiled and steamed). The cauliflowers in this study were found to give a desirable white colour (L* value in the range of 77-83) in all the three thermal processes (blanching, boiling and steaming). There was no significant difference on the effect of lead time (30-minutes interval up to 3 hours) in raw and all the three thermal processed (blanched, boiled and steamed) cauliflowers.

Keywords: ascorbic acid, cauliflower, colour, phenolics

Procedia PDF Downloads 314
3887 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 73
3886 Referencing Anna: Findings From Eye-tracking During Dutch Pronoun Resolution

Authors: Robin Devillers, Chantal van Dijk

Abstract:

Children face ambiguities in everyday language use. Particularly ambiguity in pronoun resolution can be challenging, whereas adults can rapidly identify the antecedent of the mentioned pronoun. Two main factors underlie this process, namely the accessibility of the referent and the syntactic cues of the pronoun. After 200ms, adults have converged the accessibility and the syntactic constraints, while relieving cognitive effort by considering contextual cues. As children are still developing their cognitive capacity, they are not able yet to simultaneously assess and integrate accessibility, contextual cues and syntactic information. As such, they fail to identify the correct referent and possibly fixate more on the competitor in comparison to adults. In this study, Dutch while-clauses were used to investigate the interpretation of pronouns by children. The aim is to a) examine the extent to which 7-10 year old children are able to utilise discourse and syntactic information during online and offline sentence processing and b) analyse the contribution of individual factors, including age, working memory, condition and vocabulary. Adult and child participants are presented with filler-items and while-clauses, and the latter follows a particular structure: ‘Anna and Sophie are sitting in the library. While Anna is reading a book, she is taking a sip of water.’ This sentence illustrates the ambiguous situation, as it is unclear whether ‘she’ refers to Anna or Sophie. In the unambiguous situation, either Anna or Sophie would be substituted by a boy, such as ‘Peter’. The pronoun in the second sentence will unambiguously refer to one of the characters due to the syntactic constraints of the pronoun. Children’s and adults’ responses were measured by means of a visual world paradigm. This paradigm consisted of two characters, of which one was the referent (the target) and the other was the competitor. A sentence was presented and followed by a question, which required the participant to choose which character was the referent. Subsequently, this paradigm yields an online (fixations) and offline (accuracy) score. These findings will be analysed using Generalised Additive Mixed Models, which allow for a thorough estimation of the individual variables. These findings will contribute to the scientific literature in several ways; firstly, the use of while-clauses has not been studied much and it’s processing has not yet been identified. Moreover, online pronoun resolution has not been investigated much in both children and adults, and therefore, this study will contribute to adults and child’s pronoun resolution literature. Lastly, pronoun resolution has not been studied yet in Dutch and as such, this study adds to the languages

Keywords: pronouns, online language processing, Dutch, eye-tracking, first language acquisition, language development

Procedia PDF Downloads 100
3885 Explaining the Steps of Designing and Calculating the Content Validity Ratio Index of the Screening Checklist of Preschool Students (5 to 7 Years Old) Exposed to Learning Difficulties

Authors: Sajed Yaghoubnezhad, Sedygheh Rezai

Abstract:

Background and Aim: Since currently in Iran, students with learning disabilities are identified after entering school, and with the approach to the gap between IQ and academic achievement, the purpose of this study is to design and calculate the content validity of the pre-school screening checklist (5-7) exposed to learning difficulties. Methods: This research is a fundamental study, and in terms of data collection method, it is quantitative research with a descriptive approach. In order to design this checklist, after reviewing the research background and theoretical foundations, cognitive abilities (visual processing, auditory processing, phonological awareness, executive functions, spatial visual working memory and fine motor skills) are considered the basic variables of school learning. The basic items and worksheets of the screening checklist of pre-school students 5 to 7 years old with learning difficulties were compiled based on the mentioned abilities and were provided to the specialists in order to calculate the content validity ratio index. Results: Based on the results of the table, the validity of the CVR index of the background information checklist is equal to 0.9, and the CVR index of the performance checklist of preschool children (5 to7 years) is equal to 0.78. In general, the CVR index of this checklist is reported to be 0.84. The results of this study provide good evidence for the validity of the pre-school sieve screening checklist (5-7) exposed to learning difficulties.

Keywords: checklist, screening, preschoolers, learning difficulties

Procedia PDF Downloads 102
3884 The Implementation of an E-Government System in Developing Countries: A Case of Taita Taveta County, Kenya

Authors: Tabitha Mberi, Tirus Wanyoike, Joseph Sevilla

Abstract:

The use of Information and Communication Technology (ICT) in Government is gradually becoming a major requirement to transform delivery of services to its stakeholders by improving quality of service and efficiency. In Kenya, the devolvement of government from local authorities to county governments has resulted in many counties adopting online revenue collection systems which can be easily accessed by its stakeholders. Strathmore Research and Consortium Centre (SRCC) implemented a revenue collection system in Taita Taveta, a County in coastal Kenya. It consisted of two systems that are integrated; an online system dubbed “CountyPro” for processing county services such as Business Permit applications, General Billing, Property Rates Payments and any other revenue streams from the county. The second part was a Point of Sale(PoS) system used by the county revenue collectors to charge for market fees and vehicle parking fees. This study assesses the success and challenges in adoption of the integrated system. Qualitative and quantitative data collection methods were used to collect data on the adoption of the system with the researcher using focus groups, interviews, and questionnaires to collect data from various users of the system An analysis was carried out and revealed that 87% of the county revenue officers who are situated in county offices describe the system as efficient and has made their work easier in terms of processing of transactions for customers.

Keywords: e-government, counties, information technology, online system, point of sale

Procedia PDF Downloads 247
3883 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 113
3882 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 120
3881 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 27