Search results for: diffusion of nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2220

Search results for: diffusion of nitrogen

480 Arbuscular Mycorrhizal Symbiosis in Trema orientalis: Effect of a Naturally-Occurring Symbiosis Receptor Kinase Mutant Allele

Authors: Yuda Purwana Roswanjaya, Wouter Kohlen, Rene Geurts

Abstract:

The Trema genus represents a group of fast-growing tropical tree species within the Cannabaceae. Interestingly, five species nested in this lineage -known as Parasponia- can establish rhizobium nitrogen-fixing root nodules, similar to those found in legumes. Parasponia and legumes use a conserved genetic network to control root nodule formation, among which are genes also essential for mycorrhizal symbiosis (the so-called common symbiotic pathway). However, Trema species lost several genes that function exclusively in nodulation, suggesting a loss-of the nodulation trait in Trema. Strikingly, in a Trema orientalis population found in Malaysian Borneo we identified a truncated SYMBIOSIS RECEPTOR KINASE (SYMRK) mutant allele lacking a large portion of the c-terminal kinase domain. In legumes this gene is essential for nodulation and mycorrhization. This raises the question whether Trema orientalis can still be mycorrhized. To answer this question, we established quantitative mycorrhization assay for Parasponia andersonii and Trema orientalis. Plants were grown in closed pots on half strength Hoagland medium containing 20 µM potassium phosphate in sterilized sand and inoculated with 125 spores of Rhizopagus irregularis (Agronutrion-DAOM197198). Mycorrhization efficiency was determined by analyzing the frequency of mycorrhiza (%F), the intensity of the mycorrhizal colonization (%M) and the arbuscule abundance (%A) in the root system. Trema orientalis RG33 can be mycorrhized, though with lower efficiency compared to Parasponia andersonii. From this we conclude that a functional SYMRK kinase domain is not essential for Trema orientalis mycorrhization. In ongoing experiments, we aim to investigate the role of SYMRK in Parasponia andersonii mycorrhization and nodulation. For this two Parasponia andersonii symrk CRISPR-Cas9 mutant alleles were created. One mimicking the TorSYMRKRG33 allele by deletion of exon 13-15, and a full Parasponia andersonii SYMRK knockout.

Keywords: endomycorrhization, Parasponia andersonii, symbiosis receptor kinase (SYMRK), Trema orientalis

Procedia PDF Downloads 163
479 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
478 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 233
477 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 338
476 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 179
475 In Vitro Assessment of True Digestibility and Rumen Parameters of Forage-Based Sheep Diet, Supplemented with Dietary Fossil Shell Flour

Authors: Olusegun O. Ikusika, Conference T. Mpendulo

Abstract:

The abundance of fossil shell flour (FSF) globally has increased interest in its use as a natural feed additive in livestock diets. Therefore, identifying its optimum inclusion levels in livestock production is essential for animal productivity. This study investigated the effects of various fossil shell flour (FSF) inclusion levels on in vitro digestibility, relative feed values, and rumen parameters of Dohne-Merino wethers. Twenty-four fistulated wethers with an average body weight of 20 ± 1•5 kg in a complete randomized design of four treatments having six wethers per treatment were used. They were fed a basal diet without fossil shell flour (control, 0%) or with the addition of 2% FSF (T2), 4% FSF(T3), and 6% FSF (T4) of diet DM for 35 days, excluding 14 days adaptation period. The results showed that increasing FSF levels had no effect on ruminal T0C or pH, but Ammonia-N increased (P<0.01) with increasing FSF. The total molar concentrations of volatile fatty acids (VFA) decreased (P<0.05) with increasing levels of FSF. Acetic: propionic ratio decreased except at the 4 % inclusion level. IVTDDM, IVTDNDF and IVTDADF decreased up till 4% FSF inclusion but tended to increase (P = 0.06) at 6% inclusion. Relative feed values of the diets tended to increase (P=0.07) by adding fossil shell flour. In conclusion, adding FSF to the diets of Dohne-Merino wether up to 6% FSF inclusion rates did not improve IVTDDM (In vitro true digestibility dry matter), IVTDNDF (In vitro true digestibility neutral detergent fiber), and IVTDADF (In vitro true digestibility acid detergent fiber). However, a small increment of rumen nitrogen with no adverse effects on the rumen parameters was observed. The relative feed value (RFV) moved the feed from good to premium when supplemented. Therefore, FSF supplementation could improve feed value and maintain a normal range of rumen parameters for the effective functionality of the rumen.

Keywords: fossil shell flour, rumen parameters, in vitro digestibility, feed quality, dohne-merino sheep

Procedia PDF Downloads 104
474 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 86
473 Functional Significance of Qatari Camels Milk: Antioxidant Content and Antimicrobial Activity of Protein Fractions

Authors: Tahra ElObeid, Omnya Ahmed, Reem Al-Sharshani, Doaa Dalloul, Jannat Alnattei

Abstract:

Background: Camelus dormedarius camels are also called ‘the Arabian camels’ and are present in the desert area of North Africa and the Middle East. Recently, camel’s milk has a great attention globally because of their proteins and peptides that have been reported to be beneficial for the health and in the management of many diseases. Objectives: This study was designed to investigate the antioxidant, antimicrobial activity and to evaluate the total phenolic content of camel’s milk proteins in Qatar. Methods: Fresh two camel’s milk samples from Omani breed and called Muhajer (camel’s milk A and B) were collected on the 1st of the December. Both samples were from the same location Al- Shahaniyah, Doha, Qatar, but from different local private farms and feeding system. Camel’s milk A and B were defatted by centrifugation and their proteins were extracted by acid and thermal precipitation. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic compound (TPC) was evaluated by Folin-Ciocalteu reagent (FCR). On the other hand, the antimicrobial activity against eight different type of pathogenic bacteria was evaluated by disc diffusion method and the zone of inhibition was measured. Results: The of the total phenolic content of whole milk in both camel’s milk A and B were significantly the highest among the protein extracts. The % of the DPPH radical inhibition of casein protein in both camel’s milk A and B were significantly the highest among the protein extracts. In this study, there were marked changes in the antibacterial activity in the different camel milk protein extracts. All extracts showed bacterial overgrowth. Conclusion: The antioxidant activity of the camel milk protein extracts correlated to their unique phenolic compounds and bioactive protein peptides. The antimicrobial activity was not detected perhaps due to the technique, the quality, or the extraction method. Overall, camel's milk exhibits a high antioxidant activity, which is responsible for many health benefits besides the nutritional values.

Keywords: camels milk, antioxidant content, antimicrobial activity, proteins, Qatar

Procedia PDF Downloads 214
472 The Bioequivalent: A Medical Drug Search Tool Based on a Collaborative Database

Authors: Rosa L. Figueroa, Joselyn A. Hernández

Abstract:

During the last couple of years, the Ministry of Health have been developing new health policies in order to regulate and improve in benefit of the patient the pharmaceutical system in our country. However, there are still some deficiencies in how medicines have been accessed, distributed, and sold. Therefore, it is necessary to empower the patient by offering new instances to improve access to drug information. This work introduces ‘the bioequivalent’ a medical drug search tool created to increase both diffusion and getting information about the therapeutic equivalence of medicines for the patient. The development of the search tool started with a study on the availability of sources of drug information accessible to the patient where advantages and disadvantages were analyzed. The information obtained was used to feed the functional design of the new tool. The design of the new tool shows an external interface that includes a header, body, sidebar and footer. The header has a menu containing ‘Home,’ ‘Who we are,’ and ‘Mission and vision.’ The Body contains the medical drug search tool, and the Sidebar is for the user logging in. It could be anonym, registered user, as well as, administrator. Anonym user could only use the tool. Registered users could add some information on existing medicines in the database; however, adding information will be restricted and limited to specific items and subject to administrator approval because the information added must be endorsed by the Chilean Public Health Institute. On the other hand, the administrator will have all the privileges, including creating or deleting drugs or information about them. The Bioequivalent was tested on different mobile devices, and no fails have been found. Moreover, a small survey was answered by ten people who tested the tool, and all of them agree that the tool was useful to get information about bioequivalent drugs, and they would recommend the tool to others. Nevertheless, an 80% of people who tested the tool says it was easy to use, and a 70% indicates that additional help is not required. These results are evidence that ‘the Bioequivalent’ may contribute to the knowledge about the therapeutic bioequivalence and bioequivalent drugs existing in Chile. As future work, the tool will be developed to make it available to the public for a first testing stage in a more massive scenario.

Keywords: collaborative database, bioequivalent drugs, search tool, web platform

Procedia PDF Downloads 232
471 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

Authors: S. Mohajeri

Abstract:

Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.

Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating

Procedia PDF Downloads 249
470 Cryopreservation of Ring-Necked Pheasant (Phasianus colchicus) Semen for Establishing Cryobank

Authors: Rida Pervaiz, Bushra Allah Rakha, Muhammad Sajjad Ansari, Shamim Akhter, Kainat Waseem, Sumiyyah Zuha, Tooba Javed

Abstract:

Ring-necked pheasant (Phasianus colchicus) belongs to order Galliformes and family Phasianidae. It has been recognized as the most hunted bird due to its attractive colorful appearance and meat. Loss of habitat and hunting pressure has caused population fluctuations in the native range. Under these circumstances, this species can be conserved by employing ex-situ in vitro conservation techniques. Captive breeding, in combination with semen cryobanking is the most appropriate option to conserve/propagate this species without deteriorating the genetic diversity. Cryopreservation protocols of adequate efficiency are necessary to establish semen cryobanking for a species. Therefore, present study was designed to devise an efficient extender for cryopreservation of ring-necked pheasant semen. For this purpose, a range of extenders (Beltsville Poultry, red fowl, Lake, EK, Tselutin Poultry and Chicken semen extenders) were evaluated for cryopreservation of ring-necked pheasant semen. Semen collected from 10 cocks, diluted in the Beltsville Poultry (BPSE), Red Fowl (RFE), Lake (LE), EK (EKE), Tselutin Poultry (TPE) and Chicken Semen (CSE) extenders and cryopreserved. Glycerol (10%) was added to semen at 4°C, equilibrated for 10 min, filled in 0.5 mL French straws, kept over liquid nitrogen vapors for 10 min, cryopreserved in LN2 and stored. Sperm motility (%), viability (%), live/dead ratio (%), plasma membrane (%) and DNA Integrity (%) were evaluated at post-dilution, post-cooling, post-equilibration and post-thawing stage of cryopreservation. Sperm motility (83.8 ± 3.1; 81.3 ± 3.8; 73.8 ± 2.4; 62.5 ± 1.4), viability (79.0 ± 1.7; 75.5 ± 1.6; 69.5 ± 2.3; 65.5 ± 2.4), live/dead ratio (80.5 ± 5.7; 77.3 ± 4.9; 76.0 ± 2.7; 68.3 ± 2.3), plasma membrane (74.5 ± 2.9; 73.8 ± 3.4; 71.3 ± 2.3; 75.0 ± 3.4) and DNA integrity (78.3 ± 1.7; 73.0 ± 1.2; 68.0 ± 2.0; 63.0 ± 2.5) at all four stages of cryopreservation were recorded higher (P < 0.05) in red fowl extender compared to all experimental extenders. It is concluded that red fowl extender is the best extender for cryopreservation of ring-necked pheasant semen and can be used in establishing cryobank for ex situ conservation.

Keywords: ring-necked pheasant; extenders; cryopreservation; semen quality; DNA integrity

Procedia PDF Downloads 140
469 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 133
468 Prevalence and Antibiotic Susceptibility of Bacterial Isolates from Mastitis Milk of Cow and Buffalo in Udaipur, India

Authors: Hardik Goswami, Gayatri Swarnakar

Abstract:

-Mastitis disease has been known as one of the most costly diseases of dairy cattle and observed as an inflammatory disease of cow and buffalo udder. Mastitis badly affected animal health, quality of milk and economics of milk production along with cause’s great economic loss. Bacteria have been representing the most common etiological agents of mastitis. The antibiotic sensitivity test was important to attain accurate treatment of mastitis. The aim of present research work was to explore prevalence and antibiotic susceptibility pattern of bacterial isolates recovered from cow and buffalo clinical mastitis milk sample. During the period of April 2010 to April 2014, total 1487 clinical mastitis milk samples of cow and buffalo were tested to check the prevalence of mastitis causing bacterial isolates. Milk samples were collected aseptically from the udder at the time of morning milking. The most prevalent bacterial isolates were Staphylococcus aureus (24.34%) followed by coliform bacteria (15.87%), coagulase negative Staphylococcus aureus (13.85%), non-coliform bacteria (13.05%), mixed infection (12.51%), Streptococcus spp. (10.96%). Out of 1487, 140 (9.42%) mastitis milk samples showed no growth on culture media. Identification of bacteria made on the basis of Standard Microbial features and procedures. Antibiotic susceptibility of bacterial isolates was investigated by Kirby-Bauer disk diffusion method. In vitro Antibiotic susceptibility test of bacterial isolates revealed higher sensitivity to Gentamicin (74.6%), Ciprofloxacin (62.1%) and Amikacin (59.4%). The lower susceptibility was shown to Amoxicillin (21.6%), Erythromycin (26.4%) and Ceftizoxime (29.9%). Antibiotic sensitivity pattern revealed Gentamicin are the possible effective antibiotic against the major prevalent mastitis pathogens. Present research work would be helpful in increase production, quality and quantity of milk, increase annual income of dairy owners and improve health of cow and buffaloes.

Keywords: antibiotic, buffalo, cow, mastitis, prevalence

Procedia PDF Downloads 403
467 Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia

Authors: Dawit Chankaye

Abstract:

Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere.

Keywords: Azadirachta indica, vivo, antimalarial activity, antidiabetic activity, alloxan, mice, phytochemical

Procedia PDF Downloads 79
466 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 75
465 Effect of Green Coffee Bean Extract on Gentamicin Induced Acute Renal Failure in Rats

Authors: Amina Unis, Samah S. El Basateeny, Noha A. H. Nassef

Abstract:

Introduction: Acute Renal Failure (ARF) is one of the most common problems encountered in hospitalized critically ill patients. In recent years great effort has been focused on the introduction of herbal medicine as a novel therapeutic agent for prevention of ARF. Hence, the current study was designed to investigate the effect of Green Coffee Bean Extract (GCBE) on gentamicin induced ARF in rats. Methods: The study was conducted on 60 male rats divided into six equal groups. Group 1 served as normal control group and GCBE was administered for 7 days at a dose of 20 mg/kg/day in group 2 and 40 mg/kg/day in group 3 to test the effect of GCBE on normal kidneys. ARF was induced by a daily intraperitoneal injection of gentamicin (80 mg/kg) for 7 days in group 4 (model group), group 5 (GCBE 20 mg/kg/day) and group 6 (GCBE 20 mg/kg/day). All rats were sacrificed after 7 days and blood was withdrawn for kidney function tests. Kidneys were removed for determination of renal oxidative stress markers and histopathological examination. Results: The present study showed that rats that received oral GCBE for 7 days without induction of ARF showed no significant change in all the assessed parameters in comparison to the normal control group, while rats in the groups that received oral GCBE for 7 days with induction of ARF showed a significant improvement in kidney functions tests (decrease in serum urea, serum creatinine, and blood urea nitrogen) when compared to the ARF model group. Moreover, there was significant amelioration in renal oxidative stress markers (renal malondialdehyde, renal superoxide dismutase) and renal histopathological changes in the GCBE treated groups along induction of ARF when compared to ARF model group. The most significant improvement was reported in the group where GCBE was administered for 7 days in a dose 40 mg/kg/day, along with induction of ARF. Conclusion: GCBE has a potential role in ameliorating renal damage involved in ARF mostly through its antioxidant effect.

Keywords: green coffee bean extract, gentamicin, acute renal failure, pharmacology

Procedia PDF Downloads 292
464 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 337
463 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 140
462 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid

Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov

Abstract:

This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.

Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger

Procedia PDF Downloads 582
461 Antibacterial and Antioxidant Properties of Total Phenolics from Waste Orange Peels

Authors: Kanika Kalra, Harmeet Kaur, Dinesh Goyal

Abstract:

Total phenolics were extracted from waste orange peels by solvent extraction and alkali hydrolysis method. The most efficient solvents for extracting phenolic compounds from waste biomass were methanol (60%) > dimethyl sulfoxide > ethanol (60%) > distilled water. The extraction yields were significantly impacted by solvents (ethanol, methanol, and dimethyl sulfoxide) due to varying polarity and concentrations. Extraction of phenolics using 60% methanol yielded the highest phenolics (in terms of gallic acid equivalent (GAE) per gram of biomass) in orange peels. Alkali hydrolyzed extract from orange peels contained 7.58±0.33 mg GAE g⁻¹. By using the solvent extraction technique, it was observed that 60% methanol is comparatively the best-suited solvent for extracting polyphenolic compounds and gave the maximum yield of 4.68 ± 0.47 mg GAE g⁻¹ in orange peel extracts. DPPH radical scavenging activity and reducing the power of orange peel extract were checked, where 60% methanolic extract showed the highest antioxidant activity, 85.50±0.009% for DPPH, and dimethyl sulfoxide (DMSO) extract gave the highest yield of 1.75±0.01% for reducing power ability of the orange peels extract. Characterization of the polyphenolic compounds was done by using Fourier transformation infrared (FTIR) spectroscopy. Solvent and alkali hydrolysed extracts were evaluated for antibacterial activity using the agar well diffusion method against Gram-positive Bacillus subtilis MTCC441 and Gram-negative Escherichia coli MTCC729. Methanolic extract at 300µl concentration showed an inhibition zone of around 16.33±0.47 mm against Bacillus subtilis, whereas, for Escherichia coli, it was comparatively less. Broth-based turbidimetric assay revealed the antibacterial effect of different volumes of orange peel extracts against both organisms.

Keywords: orange peels, total phenolic content, antioxidant, antibacterial

Procedia PDF Downloads 73
460 Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration

Authors: Muhammad Abid

Abstract:

The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance.

Keywords: protective coatings, anti-corrosion, galvanization, graphene, nanomaterials, polymers

Procedia PDF Downloads 96
459 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 235
458 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide

Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama

Abstract:

The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.

Keywords: carbon sphere, graphene oxide, reduction, layer by layer

Procedia PDF Downloads 141
457 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 97
456 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 171
455 Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Pyrolytic Carbon Black form Waste Tires

Authors: Yang Gon Seo, Chang-Joon Kim, Dae Hyeok Kim

Abstract:

It is estimated that 1.5 billion tires are produced worldwide each year which will eventually end up as waste tires representing a major potential waste and environmental problem. Pyrolysis has been great interest in alternative treatment processes for waste tires to produce valuable oil, gas and solid products. The oil and gas products may be used directly as a fuel or a chemical feedstock. The solid produced from the pyrolysis of tires ranges typically from 30 to 45 wt% and have high carbon contents of up to 90 wt%. However, most notably the solid have high sulfur contents from 2 to 3 wt% and ash contents from 8 to 15 wt% related to the additive metals. Upgrading tire pyrolysis products to high-value products has concentrated on solid upgrading to higher quality carbon black and to activated carbon. Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gasses from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon black from waste tires was used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pyrolytic carbon blacks were prepared by pyrolysis of waste tire chips ranged from 5 to 20 mm under the nitrogen atmosphere at 600℃ for 1 hour. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using the breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent was manufactured with a mixture of carbon black, iron oxide(III), and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II), and hydrochloric acid.

Keywords: adsorbent, ammonia, pyrolytic carbon black, hydrogen sulfide, metal oxide

Procedia PDF Downloads 257
454 Site Specific Nutrient Management Need in India Now

Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi

Abstract:

Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.

Keywords: nutrient, pesticide, crop, yield

Procedia PDF Downloads 430
453 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis

Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh

Abstract:

The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.

Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini

Procedia PDF Downloads 199
452 Phytochemical Screening and Antimicrobial Activity of Limeum indicum and Euphorbia granulata

Authors: Noshaba Dilbar, Hina Ashraf

Abstract:

Medicinal plants are considered as rich source of ingredients which can be used in drug development and synthesis. Moreover, these plants play a vital role in the development of human culture of using ayurvedic medicines around the whole world. Among all plants, dessert plants are being proved as effective source of ayurvedic medicines and remedy against many diseases. Considering the fact, two plant species Limium indicum and Euphorbia granulata were taken from Cholistan dessert of Bahawalpur, Pakistan. Firstly, phytochemical screening was done by making dry and fresh plant extracts in five different solvents i.e Petroleum ether, benzene, chloroform, ethanol and methanol. Standard confirmation tests for all compounds were applied for analysis. Results revealed the presence of high range of bioactive compounds such as alakaloids, terpenoids, glycosides, steroids, flavonoids, saponins, phytosterols, oxalic acid, anthocyanin and quinone in both plants. Best results were obtained by methanolic, chloroform and petroleum ether extracts and methanolic, ethanolic and benzene extracts of Limium indicum and Euphorbia granulate respectively. Considering the results, methanolic extracts of both plants were further analysed for antibacterial activity. Plants were analysed against four pathogens including Escherchia coli, Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aruginosa using disc diffusion method. Limium indicum showed highly significant activity against all pathogens while Euphorbia granulata showed significant activity against Klebsiella pneumonia and Proteus vulgaris but lesser against Escherchia coli and Pseudomonas aruginosa. MIC of extracts against each positive bacterium was calculated and recorded. Present plants can be considered for making useful drugs but further studies are needed to isolate active agents from plant extracts for drug development.

Keywords: antibacterial activity, Euphorbia granulata, Limium indicum, medicinal plants, phytochemical screening

Procedia PDF Downloads 117
451 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties

Authors: Akbar Esmaeili, Mahnoosh Aliahmadi

Abstract:

This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.

Keywords: nanocapsules, technolgy, biology, nano

Procedia PDF Downloads 40