Search results for: conventional magnesia carbon refractories
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6384

Search results for: conventional magnesia carbon refractories

4644 India’s Energy Transition, Pathways for Green Economy

Authors: B. Sudhakara Reddy

Abstract:

In modern economy, energy is fundamental to virtually every product and service in use. It has been developed on the dependence of abundant and easy-to-transform polluting fossil fuels. On one hand, increase in population and income levels combined with increased per capita energy consumption requires energy production to keep pace with economic growth, and on the other, the impact of fossil fuel use on environmental degradation is enormous. The conflicting policy objectives of protecting the environment while increasing economic growth and employment has resulted in this paradox. Hence, it is important to decouple economic growth from environmental degeneration. Hence, the search for green energy involving affordable, low-carbon, and renewable energies has become global priority. This paper explores a transition to a sustainable energy system using the socio-economic-technical scenario method. This approach takes into account the multifaceted nature of transitions which not only require the development and use of new technologies, but also of changes in user behaviour, policy and regulation. The scenarios that are developed are: baseline business as usual (BAU) as well as green energy (GE). The baseline scenario assumes that the current trends (energy use, efficiency levels, etc.) will continue in future. India’s population is projected to grow by 23% during 2010 –2030, reaching 1.47 billion. The real GDP, as per the model, is projected to grow by 6.5% per year on average between 2010 and 2030 reaching US$5.1 trillion or $3,586 per capita (base year 2010). Due to increase in population and GDP, the primary energy demand will double in two decades reaching 1,397 MTOE in 2030 with the share of fossil fuels remaining around 80%. The increase in energy use corresponds to an increase in energy intensity (TOE/US $ of GDP) from 0.019 to 0.036. The carbon emissions are projected to increase by 2.5 times from 2010 reaching 3,440 million tonnes with per capita emissions of 2.2 tons/annum. However, the carbon intensity (tons per US$ of GDP) decreases from 0.96 to 0.67. As per GE scenario, energy use will reach 1079 MTOE by 2030, a saving of about 30% over BAU. The penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. The study develops new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. Our scenarios are, to a great extent, based on the existing technologies. The challenges to this path lie in socio-economic-political domains. However, to attain a green economy the appropriate policy package should be in place which will be critical in determining the kind of investments that will be needed and the incidence of costs and benefits. These results provide a basis for policy discussions on investments, policies and incentives to be put in place by national and local governments.

Keywords: energy, renewables, green technology, scenario

Procedia PDF Downloads 247
4643 Study on the Relationship between the Urban Geography and Urban Agglomeration to the Effects of Carbon Emissions

Authors: Peng-Shao Chen, Yen-Jong Chen

Abstract:

In recent years, global warming, the dramatic change in energy prices and the exhaustion of natural resources illustrated that energy-related topic cannot be ignored. Despite the relationship between the cities and CO₂ emissions has been extensively studied in recent years, little attention has been paid to differences in the geographical location of the city. However, the geographical climate has a great impact on lifestyle from city to city, such as the type of buildings, the major industry of the city, etc. Therefore, the paper instigates empirically the effects of kinds of urban factors and CO₂ emissions with consideration of the different geographic, climatic zones which cities are located. Using the regression model and a dataset of urban agglomeration in East Asia cities with over one million population, including 2005, 2010, and 2015 three years, the findings suggest that the impact of urban factors on CO₂ emissions vary with the latitude of the cities. Surprisingly, all kinds of urban factors, including the urban population, the share of GDP in service industry, per capita income, and others, have different level of impact on the cities locate in the tropical climate zone and temperate climate zone. The results of the study analyze the impact of different urban factors on CO₂ emissions in urban area with different geographical climate zones. These findings will be helpful for the formulation of relevant policies for urban planners and policy makers in different regions.

Keywords: carbon emissions, urban agglomeration, urban factor, urban geography

Procedia PDF Downloads 264
4642 The Robot Physician's (Rp-7) Management and Care in Unstable Oncology Patients

Authors: Alisher Agzamov, Hanan Al Harbi

Abstract:

BACKGROUND: The timely assessment and treatment of ICU Surgical and Medical Oncology patients is important for Oncology surgeons and Medical Oncologists and Intensivists (1). We hypothesized that the use of Robot Physician’s (RP - 7) ICU management and care in ICU can improve ICU physician rapid response to unstable ICU Oncology patients. METHODS: This is a prospective study of 1501 oncology patients using a before-after, cohort-control design to test the effectiveness of RP. We have used RP to make multidisciplinary ICU rounds in the ICU and for Emergency cases. Data concerning several aspects of the RP interaction, including the latency of the response, the problem being treated, the intervention that was ordered, and the type of information gathered using the RP, were documented. The effect of RP on ICU length of stay and cost was assessed. RESULTS: The use of RP was associated with a reduction in latency of attending physician face-to-face response for routine and urgent pages compared to conventional care (RP: 10.2 +/- 3.3 minutes vs conventional: 210 +/- 40 minutes). The response latencies to Oncology Emergency (8.0 +/- 2.8 vs 140 +/- 35 minutes) and for Respiratory Failure (12 +/- 04 vs 110 +/- 45 minutes) were reduced (P < .001), as was the LOS for oncology patients (5 days) and ARDS (10 day). There was an increase in ICU occupancy by 29 % compared with the prerobot era, and there was an ICU cost savings of KD2.2 million attributable to the use of RP. CONCLUSION: The use of RP enabled rapid face-to-face ICU Intensivist - physician response to unstable ICU Oncology patients and resulted in decreased ICU cost and LOS.

Keywords: robot physician, oncology patients, icu management and care, cost and icu occupancy

Procedia PDF Downloads 62
4641 Visible Light Communication and Challenges

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.

Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes

Procedia PDF Downloads 68
4640 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 202
4639 Study the Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5 wt% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, acid value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the cured films were observed by scanning electron microscopy. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: alkyd resin, nano-coatings, dehydration, palm oil

Procedia PDF Downloads 307
4638 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost

Authors: Protima Chakraborty

Abstract:

The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.

Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability

Procedia PDF Downloads 235
4637 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System

Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa

Abstract:

Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.

Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry

Procedia PDF Downloads 131
4636 Dairy Wastewater Remediation Using Electrochemical Oxidation on Boron Doped Diamond (BDD) Anode

Authors: Arwa Abdelhay, Inshad Jum’h, Abeer Albsoul, Khalideh Alrawashdeh, Dina Al Tarazi

Abstract:

Treated wastewater reuse has been considered recently as one of the successful management strategies to overcome water shortage in countries suffering from water scarcity. The non-readily biodegradable and recalcitrant pollutants in wastewater cannot be destructed by conventional treatment methods. This paper deals with the electrochemical treatment of dairy wastewater using a promising non-conventional Boron-Doped Diamond (BDD) anode. During the electrochemical process, different operating parameters were investigated, such as electrolysis time, current density, supporting electrolyte, chemical oxygen demand (COD), turbidity as well as absorbance/color. The experimental work revealed that electrochemical oxidation carried out with no added electrolyte has significantly reduced the COD, turbidity, and color (absorbance) by 72%, 76%, and 78% respectively. Results also showed that raising the current density from 5.1 mA/cm² to 7.7 mA/cm² has boosted COD, and color removal to 82.5%, and 83% respectively. However, the current density did not show any significant effect on the turbidity. Interestingly, it was observed that adding Na₂SO₄ and FeCl₃ as supporting electrolytes brought the COD removal to 91% and 97% respectively. Likewise, turbidity and color removal has been enhanced by the addition of the same supporting electrolytes.

Keywords: boron doped-diamond anode, dairy wastewater, electrochemical oxidation, supporting electrolytes

Procedia PDF Downloads 153
4635 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections

Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor

Abstract:

Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.

Keywords: climate change, ecosystem modeling, marine protected areas, management

Procedia PDF Downloads 97
4634 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory

Procedia PDF Downloads 443
4633 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database

Authors: Ahmed Ait Hou

Abstract:

The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.

Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space

Procedia PDF Downloads 119
4632 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment

Authors: G. Kabir, A. M. Mohammed, M. A. Bawa

Abstract:

The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.

Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss

Procedia PDF Downloads 301
4631 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 352
4630 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 487
4629 Economic and Environmental Impact of the Missouri Grazing Schools

Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner

Abstract:

Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.

Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture

Procedia PDF Downloads 199
4628 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 89
4627 Potential and Techno-Economic Analysis of Hydrogen Production from Portuguese Solid Recovered Fuels

Authors: A. Ribeiro, N. Pacheco, M. Soares, N. Valério, L. Nascimento, A. Silva, C. Vilarinho, J. Carvalho

Abstract:

Hydrogen will play a key role in changing the current global energy paradigm, associated with the high use of fossil fuels and the release of greenhouse gases. This work intended to identify and quantify the potential of Solid Recovered Fuels (SFR) existing in Portugal and project the cost of hydrogen, produced through its steam gasification in different scenarios, associated with the size or capacity of the plant and the existence of carbon capture and storage (CCS) systems. Therefore, it was performed a techno-economic analysis simulation using an ASPEN base model, the H2A Hydrogen Production Model Version 3.2018. Regarding the production of SRF, it was possible to verify the annual production of more than 200 thousand tons of SRF in Portugal in 2019. The results of the techno-economic analysis simulations showed that in the scenarios containing a high (200,000 tons/year) and medium (40,000 tons/year) amount of SFR, the cost of hydrogen production was competitive concerning the current prices of hydrogen. The results indicate that scenarios 1 and 2, which use 200,000 tons of SRF per year, have lower hydrogen production values, 1.22 USD/kg H2 and 1.63 USD/kg H2, respectively. The cost of producing hydrogen without carbon capture and storage (CCS) systems in an average amount of SFR (40,000 tons/year) was 1.70 USD/kg H2. In turn, scenarios 5 (without CCS) and 6 (with CCS), which use only 683 tons of SFR from urban sources, have the highest costs, 6.54 USD/kg H2 and 908.97 USD/kg H2, respectively. Therefore, it was possible to conclude that there is a huge potential for the use of SRF for the production of hydrogen through steam gasification in Portugal.

Keywords: gasification, hydrogen, solid recovered fuels, techno-economic analysis, waste-to-energy

Procedia PDF Downloads 120
4626 Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies

Authors: Marwan Keshlaf, Hassan Fellah

Abstract:

This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior.

Keywords: Apis mellifera, modified bottom boards, Varroa destructor, Honeybee colonies

Procedia PDF Downloads 368
4625 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 302
4624 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 76
4623 Neutralizing Antibody Response against Inactivated FMDV Type O/IRN/2010 Vaccine by Electron Beam in BALB/C Mice

Authors: F. Motamedi Sedeh, Sh. Chahardoli, H. Mahravani, N. Harzandi, M. Sotoodeh, S. K. Shafaei

Abstract:

Foot-and-mouth disease virus (FMDV) is the most economically important disease of livestock. The aim of the study is inactivation of FMD virus type O/IRN/2010 by electron beam without antigenic changes as electron radio vaccine. The BALB/C mice were divided into three groups, each group containing five mice. Three groups of mice were inoculated with conventional vaccine and electron beam irradiated vaccine FMDV type O/IRN/2010 subcutaneously three weeks interval, the final group as negative control. The sera were separated from the blood samples of mice 14 days after last vaccination and tested for the presence of antibodies against FMDV type O/IRN/2010 by serum neutralization test. The Serum Neutralization Test (SNT) was carried out and antibody titration was calculated according to the Kraber protocol. The results of the SNT in three groups of mice showed the titration of neutralizing antibody in the vaccinated mice groups; electron radio vaccine and conventional vaccine were significantly higher than negative control group (P<0.05). Therefore, the radio vaccine is a good candidate to immunize animals against FMDV type O/IRN/2010.

Keywords: FMDV type O/IRN/2010, neutralizing antibody response, electron beam, radio vaccine

Procedia PDF Downloads 311
4622 Experımental Study of Structural Insulated Panel under Lateral Load

Authors: H. Abbasi, K. Sennah

Abstract:

A Structural Insulated Panel (SIP) is a structural element contains of foam insulation core sandwiched between two oriented-strand boards (OSB), plywood boards, steel sheets or fibre cement boards. Superior insulation, exceptional strength and fast insulation are the specifications of a SIP-based structure. There are also many other benefits such as less total construction costs, speed of construction, less expensive HVAC equipment required, favourable energy-efficient mortgages comparing to wood-framed houses. This paper presents the experimental analysis on selected foam-timber SIPs to study their structural behaviour when used as walls in residential construction under lateral loading. The experimental program has also taken several stud panels in order to compare the performance of SIP with conventional wood-frame system. The results of lateral tests performed in this study established a database that can be used further to develop design tables of SIP wall subjected to lateral loading caused by wind or earthquake. A design table for walls subjected to lateral loading was developed. Experimental results proved that the tested SIPs are ‘as good as’ the conventional wood-frame system.

Keywords: structural insulated panel, experimental study, lateral load, design tables

Procedia PDF Downloads 314
4621 Impact of Urban Densification on Travel Behaviour: Case of Surat and Udaipur, India

Authors: Darshini Mahadevia, Kanika Gounder, Saumya Lathia

Abstract:

Cities, an outcome of natural growth and migration, are ever-expanding due to urban sprawl. In the Global South, urban areas are experiencing a switch from public transport to private vehicles, coupled with intensified urban agglomeration, leading to frequent longer commutes by automobiles. This increase in travel distance and motorized vehicle kilometres lead to unsustainable cities. To achieve the nationally pledged GHG emission mitigation goal, the government is prioritizing a modal shift to low-carbon transport modes like mass transit and paratransit. Mixed land-use and urban densification are crucial for the economic viability of these projects. Informed by desktop assessment of mobility plans and in-person primary surveys, the paper explores the challenges around urban densification and travel patterns in two Indian cities of contrasting nature- Surat, a metropolitan industrial city with a 5.9 million population and a very compact urban form, and Udaipur, a heritage city attracting large international tourists’ footfall, with limited scope for further densification. Dense, mixed-use urban areas often improve access to basic services and economic opportunities by reducing distances and enabling people who don't own personal vehicles to reach them on foot/ cycle. But residents travelling on different modes end up contributing to similar trip lengths, highlighting the non-uniform distribution of land-uses and lack of planned transport infrastructure in the city and the urban-peri urban networks. Additionally, it is imperative to manage these densities to reduce negative externalities like congestion, air/noise pollution, lack of public spaces, loss of livelihood, etc. The study presents a comparison of the relationship between transport systems with the built form in both cities. The paper concludes with recommendations for managing densities in urban areas along with promoting low-carbon transport choices like improved non-motorized transport and public transport infrastructure and minimizing personal vehicle usage in the Global South.

Keywords: India, low-carbon transport, travel behaviour, trip length, urban densification

Procedia PDF Downloads 215
4620 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 277
4619 Potassium Acetate - Coconut Shell Activated Carbon for Adsorption of Benzene and Toluene: Equilibrium and Kinetic Studies

Authors: Jibril Mohammed, Usman Dadum Hamza, Abdulsalam Surajudeen, Baba Yahya Danjuma

Abstract:

Considerable concerns have been raised over the presence of volatile organic compounds (VOCs) in water. In this study, coconut shell based activated carbon was produced through chemical activation with potassium acetate (PAAC) for adsorption of benzene and toluene. The porous carbons were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), proximate analysis, and ultimate analysis and nitrogen adsorption tests. Adsorption of benzene and toluene on the porous carbons were conducted at varying concentrations (50-250 mg/l). The high BET surface area of 622 m2/g and highly heteroporous adsorbent prepared gave good removal efficiencies of 79 and 82% for benzene and toluene respectively, with 32% yield. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms with all the models having R2 > 0.94. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 192 mg/g and 227 mg/g for benzene and toluene respectively. The Webber and Chakkravorti equilibrium parameter (RL) values are between 0 and 1 confirming the favourability of the Langmuir model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The PAAC produced can be used effectively to salvage environmental pollution problems posed by VOCs through a sustainable process.

Keywords: adsorption, equilibrium and kinetics studies, potassium acetate, water treatment

Procedia PDF Downloads 216
4618 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 370
4617 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 147
4616 Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance

Authors: Teng-Chiu Lin, Pei-Jen Lee Shaner, Shin-Yu Lin

Abstract:

Both forest age and physical damages due to weather events such as tropical cyclones can influence forest characteristics and subsequently its capacity to sequester carbon. Detangling these influences is therefore a pressing issue under climate change. In this study, we compared the compositional and structural characteristics of three forests in Taiwan differing in age and severity of typhoon disturbances. We found that the two forests (one old-growth forest and one secondary forest) experiencing more severe typhoon disturbances had shorter stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality than the other secondary forest experiencing less severe typhoon disturbances. On the other hand, the old-growth forest had a larger amount of woody debris than the two secondary forests, suggesting a dominant role of forest age on woody debris accumulation. Of the three forests, only the two experiencing more severe typhoon disturbances formed new gaps following two 2015 typhoons, and between these two forests, the secondary forest gained more gaps than the old-growth forest. Consider that older forests generally have more gaps due to a higher background tree mortality, our findings suggest that the age effects on gap dynamics may be reversed by typhoon disturbances. This study demonstrated the effects of typhoons on forest characteristics, some of which could negate the age effects and rejuvenate older forests. If cyclone disturbances were to intensity under climate change, the capacity of older forests to sequester carbon may be reduced.

Keywords: typhoon, canpy gap, coarse woody debris, forest stature, forest age

Procedia PDF Downloads 267
4615 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate

Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue

Abstract:

The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.

Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action

Procedia PDF Downloads 78