Search results for: behavioral patterns
2137 Unraveling the Enigma of Military Coups through the Lens of State Fragility: A Qualitative Exploration of the Malian and Burkinabe Case
Authors: Deretha Bester
Abstract:
This article explores the recent military coups in Mali (August 2020) and Burkina Faso (January 2022), utilizing qualitative case study analyses to examine the pre-coup domestic contextual conditions that precipitated the events. By framing the research through the conceptual lens of state fragility, the research identifies key political, economic, and societal factors that converge to create an environment conducive for coups to occur. From the analyses, the study discusses several patterns that emerged, all revealing the significance of the core functions of governance. Through an in-depth exploration that brings the state back into the coup debate, the study provides rich insights into the complex dynamics of military intervention in political affairs, highlighting the urgency of understanding the underlying domestic factors that can lead to radical political changes. By illuminating these intricate dynamics, the article seeks to provide detailed insights needed to fully understand the challenges moulding the region's political terrain.Keywords: governance failures, military coups, political dynamics, Sahel region, state fragility
Procedia PDF Downloads 672136 Attitudes towards Inclusion of Students with Disabilities in Sultanate Oman Schools
Authors: Ibrahim Azem
Abstract:
The purpose of the present study was to investigate the attitudes of regular classroom teachers, special education teachers, principals, social workers, parents of students without disabilities and parents of students with disabilities, in Sultanate Oman towards inclusion of students with disabilities in the general school setting. Participants’ Four hundred fifty schools were selected randomly from all public schools in Sultanate Oman. From these schools 2,025 individuals volunteered to participate in this study. The Attitude Scale toward inclusion was used to measure adults’ attitudes toward teaching students with disabilities with their peers in an inclusive classroom. The scale was developed based on the conceptualization of attitude as a tri component evaluation consisting of cognitive, affective, and behavioral intention. To investigate the validity and the reliability of the scale, it shows that it has valid appropriate connotations and reliability. The results of the study showed that the adult’s role had significant effect (p < .05) on the participants’ attitudes toward inclusion. Moreover, the results indicated significant (p < .05) gender differences in the attitudes toward inclusion, males scored significantly (p < .05) higher than females. The result of the study also showed that the special education teachers had positives attitudes more than the other type of stakeholders.Keywords: inclusion, students with disabilities, Oman, stakeholders
Procedia PDF Downloads 3092135 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels
Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.Keywords: data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background
Procedia PDF Downloads 2792134 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 722133 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation
Authors: Sopheak Sorn, Kwok Yip Szeto
Abstract:
Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio
Procedia PDF Downloads 4202132 Empirical Evaluation of Game Components Based on Learning Theory: A Preliminary Study
Authors: Seoi Lee, Dongjoo Chin, Heewon Kim
Abstract:
Gamification refers to a technique that applies game elements to non-gaming elements, such as education and exercise, to make people more engaged in these behaviors. The purpose of this study was to identify effective elements in gamification for changing human behaviors. In order to accomplish this purpose, a survey based on learning theory was developed, especially for assessing antecedents and consequences of behaviors, and 8 popular and 8 unpopular games were selected for comparison. A total of 407 adult males and females were recruited via crowdsourcing Internet marketplace and completed the survey, which consisted of 19 questions for antecedent and 14 questions for consequences. Results showed no significant differences in consequence questions between popular and unpopular games. For antecedent questions, popular games are superior to unpopular games in character customization, play type selection, a sense of belonging, patch update cycle, and influence or dominance. This study is significant in that it reveals the elements of gamification based on learning theory. Future studies need to empirically validate whether these factors affect behavioral change.Keywords: gamification, learning theory, antecedent, consequence, behavior change, behaviorism
Procedia PDF Downloads 2242131 Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.Keywords: supply chain management, green supply chain management, system dynamics, energy consumption
Procedia PDF Downloads 1392130 Chitosan Magnetic Nanoparticles and Its Analytical Applications
Authors: Eman Alzahrani
Abstract:
Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption
Procedia PDF Downloads 4172129 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics
Authors: Ramovatar, Neeraj Panwar
Abstract:
Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics
Procedia PDF Downloads 1532128 Need of More Social Work Students to Work in Aging Fields
Authors: Mbita Mbao
Abstract:
Social work programs are grappling with changing students’ attitudes about working with older adults. Our study aimed to understand whether adding a guest speaker working in the field into weekly content would influence students’ attitudes about working with older adults. We conducted an exploratory study using a cross-sectional design with a pre and post-test to answer our question. Eighteen MSW students were enrolled in the ‘Social Work with Older Adults’ course, and 17 students completed the pre-posttests. Willingness to work with older adults was measured using the ‘Willingness to Work with Elderly People Scale (WEPS)’. Guest speakers were recruited from local area agencies on aging. A significant finding was a statistically significant (t= −3.31, p < .01) increase from pre- (M = 3.59, SD = 1.54) to post-test (M = 4.88, SD = 1.22) scores for the item, ‘My professors advise me to consider aged care career.’ In addition, there were statistically significant pre to post-test differences for all items of ‘Perceived Behavioral Control’ and ‘Intention toward working with older adults’ reflecting competence, training, skills, and capabilities to work with older adults, suggesting guest speakers may play a crucial role as influential sources to positively shape students’ attitudes and intentions toward working with older adults.Keywords: guest speakers, workforce, aging, students
Procedia PDF Downloads 252127 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification
Authors: Chung-Ming Lo, Chung-Chien Lee
Abstract:
In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis
Procedia PDF Downloads 2872126 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4662125 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks
Authors: Emin Avcı, Çiydem Çatak
Abstract:
The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.Keywords: banking, economic cycles, leverage, procyclicality
Procedia PDF Downloads 2662124 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials
Authors: hassan gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium
Procedia PDF Downloads 742123 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy
Authors: Hassan Gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium
Procedia PDF Downloads 3092122 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2332121 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3652120 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 1802119 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns
Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling
Procedia PDF Downloads 522118 21st Century Provocation: Modern Slavery, the Implications for Individuals on the Autism Spectrum
Authors: Christina Surmei
Abstract:
Autism Spectrum Disorder (ASD) is defined as a diverse range of developmental conditions that affect an individual’s functionality. ASD is not linear, and individuals can present with deficits in social interaction, communication, and demonstrate limited, repetitive patterns of behaviour, interests, or activities. These characteristics may be observed in a variety of ways and range from mild to severe. ASD may include autism disorder, pervasive developmental disorder not otherwise specified, Asperger’s, or other related pervasive developmental disorders. Modern slavery is defined as 'situations of exploitation that a person cannot refuse or leave because of threats, violence, coercion, and abuse of power or deception'. A review of the literature investigated the prevalence of research regarding ASD and modern slavery. Two universal search engines and five online journals were used as the apparatuses of inquiry. The results revealed two editorials, one study, and one act, totaling four publications attesting to ASD and modern slavery as a joint entity. This is representative of a vast absence of research. However, as individual entities research on autism and modern slavery is in a general high occurrence. This paper has identified a significant gap in research on ASD and modern slavery, and initiates the dialogue to unpack a significant global issue in society today.Keywords: autism spectrum, education, modern slavery, support
Procedia PDF Downloads 1692117 Flo: Period-Tracking App with AI Powered Tools
Authors: Dania Baaboud, Renad Al-zahrani, Mahnoor Khan, Riya Afroz
Abstract:
Flo is a smart period-tracking tool that uses artificial intelligence (AI) to offer individualized reproductive health predictions and insights. Flo makes very accurate predictions about menstrual cycles, ovulation, and fertility windows by evaluating user inputs, including cycle duration, symptoms, and patterns. Its machine learning algorithms are constantly evolving, providing personalized health recommendations, instructional materials, and early identification of possible health abnormalities such as reproductive problems and hormone imbalances. Flo, which was introduced in 2015 and upgraded with AI in 2017, is a revolutionary use of technology in healthcare that empowers people to make knowledgeable decisions regarding their well-being. Despite its advantages, our study included drawbacks, such as limited access to premium services and a small sample size. While highlighting unique characteristics, a comparative comparison with similar applications such as Clue and Glow confirmed Flo's outstanding AI integration for individualized healthcare. All things considered, Flo is a prime example of how AI can be used to tackle intricate biological processes, giving consumers the ability to efficiently control their reproductive health and opening the door for improvements in individualized medical technology.Keywords: Flo, period-tracking app, period symptoms, women’s health, machinery
Procedia PDF Downloads 72116 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness
Authors: James Kinsella
Abstract:
There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.Keywords: behavioral finance, emotional finance, economy-biology, social mood
Procedia PDF Downloads 1292115 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 152114 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App
Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira
Abstract:
The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.Keywords: travel app, behavior change, persuasive technology, travel information, causality
Procedia PDF Downloads 1432113 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone
Authors: Dedah Ahmed Babou, Nicolas Bez
Abstract:
The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris
Procedia PDF Downloads 1482112 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method
Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh
Abstract:
Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel
Procedia PDF Downloads 4572111 A Risk Management Approach to the Diagnosis of Attention Deficit-Hyperactivity Disorder
Authors: Lloyd A. Taylor
Abstract:
An increase in the prevalence of Attention Deficit-Hyperactivity Disorder (ADHD) highlights the need to consider factors that may be exacerbating symptom presentation. Traditional diagnostic criteria provide a little framework for healthcare providers to consider as they attempt to diagnose and treat children with behavioral problems. In fact, aside from exclusion criteria, limited alternative considerations are available, and approaches fail to consider the impact of outside factors that could increase or decrease the likelihood of appropriate diagnosis and success of interventions. This paper will consider specific systems-based factors that influence behavior and intervention successes that, when not considered, could account for the upsurge of diagnoses. These include understanding (1) challenges in the healthcare system, (2) the influence and impact of educators and the educational system, (3) technology use, and (4) patient and parental attitudes about the diagnosis of ADHD. These factors must be considered both individually and as a whole when considering both the increase in diagnoses and the subsequent increases in prescriptions for psychostimulant medication. A theoretical model based on a risk management approach will be presented. Finally, data will be presented that demonstrates pediatric provider satisfaction with this approach to diagnoses and treatment of ADHD as it relates to practice trends.Keywords: ADHD, diagnostic criteria, risk management model, pediatricians
Procedia PDF Downloads 952110 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-world, resilience to damage
Procedia PDF Downloads 5492109 Association of Dietary Intake with the Nutrition Knowledge, Food Label Use, and Food Preferences of Adults in San Jose del Monte City, Bulacan, Philippines
Authors: Barby Jennette A. Florano
Abstract:
Dietary intake has been associated with the health and wellbeing of adults, and lifestyle related diseases. The aim of this study was to investigate whether nutrition knowledge, food label use, and food preference are associated with the dietary intake in a sample of San Jose Del Monte City, Bulacan (SJDM) adults. A sample of 148 adults, with a mean age of 20 years, completed a validated questionnaire related to their demographic, dietary intake, nutrition knowledge, food label use and food preference. Data were analyzed using Pearson correlation and there was no association between dietary intake and nutrition knowledge. However, there were positive relationships between dietary intake and food label use (r=0.1276, p<0.10), and dietary intake and food preference (r=0.1070, p<0.10). SJDM adults who use food label and have extensive food preference had better diet quality. This finding magnifies the role of nutrition education as a potential tool in health campaigns to promote healthy eating patterns and reading food labels among students and adults. Results of this study can give information for the design of future nutrition education intervention studies to assess the efficacy of nutrition knowledge and food label use among a similar sample population.Keywords: dietary intake, nutrition knowledge, food preference, food label use
Procedia PDF Downloads 932108 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 84