Search results for: reinforced concrete slab
962 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade
Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir
Abstract:
In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.Keywords: blade, crack, frequency, material, SIF
Procedia PDF Downloads 548961 A Model of Sustainability in the Accommodation Sector
Authors: L. S. Zavodna, J. Zavodny Pospisil
Abstract:
The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.Keywords: accommodation sector, model, sustainable tourism, sustainability
Procedia PDF Downloads 303960 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement
Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars
Procedia PDF Downloads 391959 Sustainable Accommodation Design: Improving Residential Property Shortage for Low-Income People in Nigeria
Authors: Paulinus W. Ihuah, Iyenemi Ibimina Kakulu, Victor A. Akujuru
Abstract:
The development of the residential property is very expensive in Nigeria, especially as it is observed in Port Harcourt, although it is also investment costly in the other cities of Nigeria. The costly development nature incidentally reasons to the high deficits in residential property availability and affordability for the low-income people. Therefore, the main purpose of this paper is to provide sustainable accommodation design, which should improve residential property expensiveness and shortages for the low-income people. This is achieved through investigation of the tangible requirements and needs of the end-user of the property (low-income people), which thereafter would enhance sustainable and affordable residential property accommodation design for the end-users. Both the quantitative and qualitative instruments of data collection were utilised. The quantitative instrument via questionnaires was designed to examine the real needs and r requirement of the low-income people. However, the qualitative instrument via structured interview was espoused for the gathering of professionals’ opinions on the three predicted sustainable accommodation design alternatives. The analysis employed content analysis parameters, which offered a sustainable accommodation design and designed alternatives minimises costs and environmental impacts whereas exploiting the social satisfaction in residential accommodation developments. The finding underscores that sustainable accommodation design and development is practicable in Nigeria, so that cost of residential accommodation provided through this system is cheap to the low-income people. Further, erection of multi-storey residential accommodation units such as bedsit structure by utilising the concrete frame structure and building the internal and external walls with hollow concrete blocks within areas 60-130 square meters is encouraged. This paper philosophy indicates that by using sustainable accommodation design practices in Nigeria, improvements in the costs and shortages of residential accommodation can be attained for low-income people. However, policies support the government cannot be overemphasised for proper implementation of the suggested scheme.Keywords: sustainable accommodation, housing design, residential property, low-income people
Procedia PDF Downloads 266958 Computer Simulations of Stress Corrosion Studies of Quartz Particulate Reinforced ZA-27 Metal Matrix Composites
Authors: K. Vinutha
Abstract:
The stress corrosion resistance of ZA-27 / TiO2 metal matrix composites (MMC’s) in high temperature acidic media has been evaluated using an autoclave. The liquid melt metallurgy technique using vortex method was used to fabricate MMC’s. TiO2 particulates of 50-80 µm in size are added to the matrix. ZA-27 containing 2,4,6 weight percentage of TiO2 are prepared. Stress corrosion tests were conducted by weight loss method for different exposure time, normality and temperature of the acidic medium. The corrosion rates of composites were lower to that of matrix ZA-27 alloy under all conditions.Keywords: autoclave, MMC’s, stress corrosion, vortex method
Procedia PDF Downloads 474957 Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls
Authors: Soon Ok Jo, Han Kyu Jeung, Si Woo Park
Abstract:
With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed.Keywords: carbon fiber, tow spreading fiber, pre-preg, roll structure
Procedia PDF Downloads 347956 Virtual Academy Next: Addressing Transition Challenges Through a Gamified Virtual Transition Program for Students with Disabilities
Authors: Jennifer Gallup, Joel Bocanegra, Greg Callan, Abigail Vaughn
Abstract:
Students with disabilities (SWD) engaged in a distance summer program delivered over multiple virtual mediums that used gaming principles to teach and practice self-regulated learning (SRL) through the process of exploring possible jobs. Gaming quests were developed to explore jobs and teach transition skills. Students completed specially designed quests that taught and reinforced SRL and problem-solving through individual, group, and teacher-led experiences. SRL skills learned were reinforced through guided job explorations over the context of MinecraftEDU, zoom with experts in the career, collaborations with a team over Marco Polo, and Zoom. The quests were developed and laid out on an accessible web page, with active learning opportunities and feedback conducted within multiple virtual mediums including MinecraftEDU. Gaming mediums actively engage players in role-playing, problem-solving, critical thinking, and collaboration. Gaming has been used as a medium for education since the inception of formal education. Games, and specifically board games, are pre-historic, meaning we had board games before we had written language. Today, games are widely used in education, often as a reinforcer for behavior or for rewards for work completion. Games are not often used as a direct method of instruction and assessment; however, the inclusion of games as an assessment tool and as a form of instruction increases student engagement and participation. Games naturally include collaboration, problem-solving, and communication. Therefore, our summer program was developed using gaming principles and MinecraftEDU. This manuscript describes a virtual learning summer program called Virtual Academy New and Exciting Transitions (VAN) that was redesigned from a face-to-face setting to a completely online setting with a focus on SWD aged 14-21. The focus of VAN was to address transition planning needs such as problem-solving skills, self-regulation, interviewing, job exploration, and communication for transition-aged youth diagnosed with various disabilities (e.g., learning disabilities, attention-deficit hyperactivity disorder, intellectual disability, down syndrome, autism spectrum disorder).Keywords: autism, disabilities, transition, summer program, gaming, simulations
Procedia PDF Downloads 74955 Construal Level Perceptions of Environmental vs. Social Sustainability in Online Fashion Shopping Environments
Authors: Barbara Behre, Verolien Cauberghe, Dieneke Van de Sompel
Abstract:
Sustainable consumption is on the rise, yet it has still not entered the mainstream in several industries, such as the fashion industry. In online fashion contexts, sustainability cues have been used to signal the sustainable benefits of certain garments to promote sustainable consumption. These sustainable cues may focus on the ecological or social dimension of sustainability. Since sustainability, in general, relates to distant, abstract benefits, the current study aims to examine if and how psychological distance may mediate the effects of exposure to different sustainability cues on consumption outcomes. Following the framework of Construal Level Theory of Psychological Distance, reduced psychological distance renders the construal level more concrete, which may influence attitudes and subsequent behavior in situations like fashion shopping. Most studies investigated sustainability as a composite, failing to differentiate between ecological and societal aspects of sustainability. The few studies examining sustainability more in detail uncovered that environmental sustainability is rather perceived in abstract cognitive construal, whereas social sustainability is linked to concrete construal. However, the construal level affiliation of the sustainability dimensions likely is not universally applicable to different domains and stages of consumption, which further suggest a need to clarify the relationships between environmental and social sustainability dimensions and the construal level of psychological distance within fashion brand consumption. While psychological distance and construal level have been examined in the context of sustainability, these studies yielded mixed results. The inconsistent findings of past studies might be due to the context-dependence of psychological distance as inducing construal differently in diverse situations. Especially in a hedonic consumption context like online fashion shopping, the role of visual processing of information could determine behavioural outcomes as linked to situational construal. Given the influence of the mode of processing on psychological distance and construal level, the current study examines the moderating role of verbal versus non-verbal presentation of the sustainability cues. In a 3 (environmental sustainability vs. social sustainability vs. control) x 2 (non-verbal message vs. verbal message) between subjects experiment, the present study thus examines how consumers evaluate sustainable brands in online shopping contexts in terms of psychological distance and construal level, as well as the impact on brand attitudes and buying intentions. The results among 246 participants verify the differential impact of the sustainability dimensions on fashion brand purchase intent as mediated by construal level and perceived psychological distance. The ecological sustainability cue is perceived as more concrete, which might be explained by consumer bias induced by the predominance of pro-environmental sustainability messages. The verbal versus non-verbal presentation of the sustainability cue neither had a significant influence on distance perceptions and construal level nor on buying intentions. This study offers valuable contributions to the sustainable consumption literature, as well as a theoretical basis for construal-level framing as applied in sustainable fashion branding.Keywords: construal level theory, environmental vs social sustainability, online fashion shopping, sustainable fashion
Procedia PDF Downloads 103954 The Flipped Classroom Used in Business Curricula
Authors: Hedia Mhiri Sellami
Abstract:
This case study used the principles of the flipped classroom (FC) in courses dealing with the use of the Information and Communication Technology (ICT) in three business curricula. The FC was used because our first goal is to devote more time to practice the theoretical concepts, so, before the class session, students had to watch videos introducing the concept they will learn. The videos weren't designed for our course, they are on Youtube and correspond to real cases of the ICT use in companies. This choice was also made in order to meet our second goal; it was to motivate students by showing them that the aspects covered by the course are very useful in the business. This case study reinforced the positive reputation of the FC as it was globally appreciated by our students. Beside, we managed to achieve our objectives relating to the motivation and application of concepts studied.Keywords: flipped classroom, business, ICT, video, learning
Procedia PDF Downloads 286953 Utilization of Nanoclay to Reinforce Flax Fabric-Geopolymer Composites
Authors: H. S. Assaedi, F. U. A. Shaikh, I. M. Low
Abstract:
Geopolymer composites reinforced with flax fabrics and nano-clay are fabricated and studied for physical and mechanical properties using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to improve density and decrease porosity while improving flexural strength and post-peak toughness. A microstructural analysis indicated that nanoclay behaves as filler and as an activator supporting geopolymeric reaction while producing a higher content geopolymer gel improving the microstructure of binders. The process enhances adhesion between the geopolymer matrix and flax fibres.Keywords: flax fibres, geopolymer, mechanical properties, nanoclay
Procedia PDF Downloads 244952 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 297951 Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use
Authors: Urbi Pal, Piyas Palit, Jitendra Mathur, Abhay Chaturvedi, Sandip Bhattacharya
Abstract:
The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel.Keywords: cable reel spring, fatigue life, stress, spring steel
Procedia PDF Downloads 154950 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement
Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar
Abstract:
The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties
Procedia PDF Downloads 187949 Performance Evaluation of Composite Beam under Uniform Corrosion
Authors: Ririt Aprilin Sumarsono
Abstract:
Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion
Procedia PDF Downloads 286948 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 238947 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers
Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan
Abstract:
PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber.Keywords: amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile
Procedia PDF Downloads 307946 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System
Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine
Abstract:
The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms
Procedia PDF Downloads 527945 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part
Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang
Abstract:
Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems
Procedia PDF Downloads 208944 Comparison of Steel and Composite Analysis of a Multi-Storey Building
Authors: Çiğdem Avcı Karataş
Abstract:
Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.Keywords: composite analysis, earthquake, steel, multi-storey building
Procedia PDF Downloads 569943 A Brief Overview of Seven Churches in Van Province
Authors: Eylem Güzel, Soner Guler, Mustafa Gulen
Abstract:
Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective.Keywords: earthquake, historical structures, Van province, church
Procedia PDF Downloads 543942 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting
Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava
Abstract:
A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.Keywords: selective laser melting, graphene, composite, mechanical property, tribological property
Procedia PDF Downloads 135941 MRCP as a Pre-Operative Tool for Predicting Variant Biliary Anatomy in Living Related Liver Donors
Authors: Awais Ahmed, Atif Rana, Haseeb Zia, Maham Jahangir, Rashed Nazir, Faisal Dar
Abstract:
Purpose: Biliary complications represent the most common cause of morbidity in living related liver donor transplantation and detailed preoperative evaluation of biliary anatomic variants is crucial for safe patient selection and improved surgical outcomes. Purpose of this study is to determine the accuracy of preoperative MRCP in predicting biliary variations when compared to intraoperative cholangiography in living related liver donors. Materials and Methods: From 44 potential donors, 40 consecutive living related liver donors (13 females and 28 males) underwent donor hepatectomy at our centre from April 2012 to August 2013. MRCP and IOC of all patients were retrospectively reviewed separately by two radiologists and a transplant surgeon.MRCP was performed on 1.5 Tesla MR magnets using breath-hold heavily T2 weighted radial slab technique. One patient was excluded due to suboptimal MRCP. The accuracy of MRCP for variant biliary anatomy was calculated. Results: MRCP accurately predicted the biliary anatomy in 38 of 39 cases (97 %). Standard biliary anatomy was predicted by MRCP in 25 (64 %) donors (100% sensitivity). Variant biliary anatomy was noted in 14 (36 %) IOCs of which MRCP predicted precise anatomy of 13 variants (93 % sensitivity). The two most common variations were drainage of the RPSD into the LHD (50%) and the triple confluence of the RASD, RPSD and LHD (21%). Conclusion: MRCP is a sensitive imaging tool for precise pre-operative mapping of biliary variations which is critical to surgical decision making in living related liver transplantation.Keywords: intraoperative cholangiogram, liver transplantation, living related donors, magnetic resonance cholangio-pancreaticogram (MRCP)
Procedia PDF Downloads 396940 Design and Optimization of Composite Canopy Structure
Authors: Prakash Kattire, Rahul Pathare, Nilesh Tawde
Abstract:
A canopy is an overhead roof structure generally used at the entrance of a building to provide shelter from rain and sun and may also be used for decorative purposes. In this paper, the canopy structure to cover the conveyor line has been studied. Existing most of the canopy structures are made of steel and glass, which makes a heavier structure, so the purpose of this study is to weight and cost optimization of the canopy. To achieve this goal, the materials of construction considered are Polyvinyl chloride (PVC) natural composite, Fiber Reinforced Plastic (FRP), and Structural steel Fe250. Designing and modeling were done in Solid works, whereas Altair Inspire software was used for the optimization of the structure. Through this study, it was found that there is a total 10% weight reduction in the structure with sufficient reserve for structural strength.Keywords: canopy, composite, FRP, PVC
Procedia PDF Downloads 143939 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems
Authors: Ramprasad Srinivasan
Abstract:
Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation
Procedia PDF Downloads 65938 High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites
Authors: M. Derradji, W. B. Liu
Abstract:
The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties
Procedia PDF Downloads 154937 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft
Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth
Abstract:
Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity
Procedia PDF Downloads 340936 Advantages of Utilizing Post-Tensioned Stress Ribbon Systems in Long Span Roofs
Authors: Samih Ahmed, Guayente Minchot, Fritz King, Mikael Hallgren
Abstract:
The stress ribbon system has numerous advantages that include but are not limited to increasing overall stiffness, control deflections, and reduction of materials consumption, which in turn, reduces the load and the cost. Nevertheless, its use is usually limited to bridges, in particular, pedestrian bridges; this can be attributed to the insufficient space that buildings' usually have for end supports, and/or back- stayed cables, that can accommodate the expected high pull-out forces occurring at the cables' ends. In this work, the roof of Västerås Travel Center, which will become one of the longest cable suspended roofs in the world, was chosen as a case study. The aim was to investigate the optimal technique to model the post-tensioned stress ribbon system for the roof structure using the FEM software SAP2000 and to assess any possible reduction in the pull-out forces, deflections, and concrete stresses. Subsequently, a conventional cable suspended roof was simulated using SAP2000, and compared to the post-tension stress ribbon system in order to examine the potential of the latter. Moreover, the effects of temperature loads and support movements on the final design loads were examined. Based on the study, a few practical recommendations concerning the construction method and the iterative design process, required to meet the architectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concrete stresses, overall deflections, and more importantly, reduces the pull-out forces and the vertical reactions at both ends by up to 16% and 11%, respectively, which substantially reduces the design forces for the support structures. The magnitude of these reductions was found to be highly correlated to the applied prestressing force, making the size of the prestressing force a key factor in the design.Keywords: cable suspended, post-tension, roof structure, SAP2000, stress ribbon
Procedia PDF Downloads 158935 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 154934 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis
Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix
Abstract:
This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.Keywords: CFRP, composite failure, FEA, non-circular chainring
Procedia PDF Downloads 293933 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures
Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý
Abstract:
Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.Keywords: electron diffraction spectroscopy, high strength concrete, interfacial transition zone, normal strength concrete, scanning electron microscopy
Procedia PDF Downloads 290