Search results for: mixed effect logistic regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32027

Search results for: mixed effect logistic regression model

30347 Characteristic Components in Cornusofficinalis to AGEs Injury Protective Effect and Mechanism of HUVEC

Authors: Yu-Han Tao, Hui-Qin Xu

Abstract:

The present study aimed to explain the protective effect of Cornus officinalis characteristic components, under AGEs damage to HUVEC. After cultured HUVEC adhered, Cornus officinalis characteristic components such as loganin, morroniside, oleanolic acid, ursolic acid and aminoguanidine (positive control dug) hatched, after 1h the AGEs (200 mg/L) were added. After 24h, LDH, SOD, MDA, NO, ET, and AngⅡ, TGF-β, IL-1β, ROS in the supernatant were determined. The results showed the Cornus officinalis characteristic compounds could improve vitality of SOD, NO, reduce the MDA, ET, AngⅡ, TGF-β, IL-1β, ROS significantly when compared with the model groug. Loganin, oleanic acid, ursolic acid, had significant protective effect on AGEs injured HUVEC. As a conclusion, characteristic components in Cornus officinalis had a positive effect after HUVEC injured by AGEs.

Keywords: Cornus officinalis, morroniside, oganin, oleanolic acid, ursolic acid

Procedia PDF Downloads 383
30346 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort

Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler

Abstract:

Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.

Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America

Procedia PDF Downloads 86
30345 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 138
30344 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 79
30343 Determinants of Breastfeeding in Thailand

Authors: Patarapan Odton

Abstract:

This study investigates demographic and socio-economic factors of breastfeeding practice, including exclusively breastfeeding among children in Thailand using the Multiple Indicator Cluster Survey (MICS3 and MICS4). Logistic regression models were used to examine the determinants of initial breastfeeding, exclusively breastfeeding, and predominant breastfeeding, using data from women and children section of the survey. For initial breastfeeding, women live in rural area were more likely to start breastfeeding within one day of birth rather than who live in urban area in both round of the surveys. In year 2012, there were significantly higher probabilities of women in rural area started breastfeeding within one hour of birth compare to urban area. Women in southern Thailand have higher probabilities of start breastfeeding within one hour and one day than women in Bangkok and central region. During the year 2005-2006, children aged less than 5 years old lived in rural area have been breastfed higher than children in urban area. Children live in the northeast region were more likely to have been breastfed than the other regions. Only the second wealth quintile group was significant higher probability of ever been breastfed than the poorest group. The findings in the second round of the survey are different from the year 2005-06. In 2012, there was no difference in probability of ever been breastfed among children live in urban and rural area, children in Bangkok and central region were less probability of ever been breastfed than the others.

Keywords: Breastfeeding, Exclusive Breastfeeding, Predominant Breastfeeding, Urban-Rural Difference

Procedia PDF Downloads 263
30342 Adoption and Diffusion of E-Government Services in India: The Impact of User Demographics and Service Quality

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

This study attempts to analyze the impact of demography and service quality on the adoption and diffusion of e-Government services in the context of India. The objective of this paper is to study the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. At the completion of this study, a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-Government services is expected to be developed. Dedicated authorities, particularly those in developing economies, may use that model or its augmented versions to design and update e-Government services and promote their use among citizens. After all, enhanced public participation is required to improve efficiency, engagement and transparency in the implementation of the aforementioned services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 291
30341 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 594
30340 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 204
30339 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of e-assessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: secure technology acceptance, e-assessment security, e-assessment, education technology

Procedia PDF Downloads 461
30338 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 178
30337 The Effect of Fast Food Globalisation on Students’ Food Choice

Authors: Ijeoma Chinyere Ukonu

Abstract:

This research seeks to investigate how the globalisation of fast food has affected students’ food choice. A mixed method approach was used in this research; basically involving quantitative and qualitative methods. The quantitative method uses a self-completion questionnaire to randomly sample one hundred and four students; while the qualitative method uses a semi structured interview technique to survey four students on their knowledge and choice to consume fast food. A cross tabulation of variables and the Kruskal Wallis nonparametric test were used to analyse the quantitative data; while the qualitative data was analysed through deduction of themes, and trends from the interview transcribe. The findings revealed that globalisation has amplified the evolution of fast food, popularising it among students. Its global presence has affected students’ food choice and preference. Price, convenience, taste, and peer influence are some of the major factors affecting students’ choice of fast food. Though, students are familiar with the health effect of fast food and the significance of using food information labels for healthy choice making, their preference of fast food is more than homemade food.

Keywords: fast food, food choice, globalisation, students

Procedia PDF Downloads 293
30336 Soret and Dufour's Effects on Mixed Convection Unsteady MHD Boundary Layer Flow over a Stretching Sheet Embedded in a Porous Medium with Chemically Reactive Spices

Authors: Deva Kanta Phukan

Abstract:

An investigation is made to carry out to study the thermal-diffusion and diffusion thermo-effects in hydro-magnetic unsteady flow by a mixed convection boundary layer past an impermeable vertical stretching sheet embedded in a conducting fluid-saturated porous medium in the presence of a chemical reaction effect. The velocity of stretching surface, the surface temperature and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed in to self similar unsteady equations using similarity transformations and solved numerically by the Runge kutta fourth order scheme in association with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, temperature, the concentration, the skin friction , and the Nusselt and Sherwood numbers are shown graphically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.

Keywords: heat and mass transfer, boundary layer flow, porous media, magnetic field, Soret number, Dufour’s number

Procedia PDF Downloads 446
30335 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall

Procedia PDF Downloads 398
30334 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 80
30333 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 339
30332 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 265
30331 Investigating the Dose Effect of Electroacupuncture on Mice Inflammatory Pain Model

Authors: Wan-Ting Shen, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Electroacupuncture (EA) has been reported effective for many kinds of pain and is a common treatment for acute or chronic pain. However, to date, there are limited studies examining the effect of acupuncture dosage. In our experiment, after injecting mice with Complete Freund’s Adjuvant (CFA) to induce inflammatory pain, two groups of mice were administered two different 15 min EA treatments at 2Hz. The first group received EA at a single acupuncture point (ST36, Zusanli) in both legs (two points), whereas the second group received two acupuncture points in both legs (four points) and the analgesic effect was compared. It was found that double points (ST36, Zusanli and SP6, Sanyinjiao) were significantly superior to single points (ST36, Zusanli) when evaluated using the electronic von Frey Test (mechanic) and Hargreaves’ Test (thermal). Through this study, it is expected more novel physiological mechanisms of acupuncture analgesia will be discovered.

Keywords: anti-inflammation, dose effect, electroacupuncture, pain control

Procedia PDF Downloads 175
30330 Stress Hyperglycemia: A Predictor of Major Adverse Cardiac Events in Non-Diabetic Patients With Acute Heart Failure

Authors: Fahad Raj Khan, Suleman Khan

Abstract:

There is a lack of consensus about the predictive value of raised blood glucose levels in terms of major adverse cardiac events (MACEs) in non-diabetic patients admitted for acute decompensated heart failure. The purpose of this research was to examine the long-term prognosis of acute decompensated heart failure (ADHF) in non-diabetic persons who had increased blood glucose levels, i.e., stress hyperglycemia, at the time of their ADHF hospitalization. The research involved 650 non-diabetic patients. Based on their admission stress hyperglycemia, they were divided into two groups.ie with and without (SHGL). The two groups' one-year outcomes for major adverse cardiac events (MACEs) were compared, and key predictors of MACEs were discovered. For statistical analysis, the two-tailed Mann-Whitney U test, Fisher's exact test, and binary logistic regression analysis were utilized. SHGL was found in 353 (54.3%) individuals. It was more frequent in men than in women. About 27% of patients with SHGL had previously been admitted for ADHF. Almost 62% were hypertensive, whereas 14 % had CKD. MACEs were significantly predicted by SHGL, HTN, prior hospitalization for ADHF, CKD, and cardiogenic shock upon admission. SHGL at the time of ADHF admission, independent of DM status, may be a predictive indication of MACEs.

Keywords: stress hyperglycemia, acute heart failure, major adverse cardiac events, MACEs

Procedia PDF Downloads 95
30329 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 99
30328 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 74
30327 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: bamboo chips, permeability, mechanical properties, triaxial compression

Procedia PDF Downloads 335
30326 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring

Procedia PDF Downloads 162
30325 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 330
30324 Integrated Optimization of Vehicle Microscopic Behavior and Signal Control for Mixed Traffic Based on a Distributed Strategy

Authors: Siliang Luan

Abstract:

In this paper, an integrated-decentralized bi-level optimization framework is developed to coordinate intersection signal operations and vehicle driving behavior at an isolated signalized intersection in a mixed traffic environment. The framework takes advantage of both signal control and conflict elimination by incorporating an integrated level and a decentralized level. Two distinct signal control methods are introduced: the classical green phase control strategy and the white phase control strategy. The latter allows certain vehicles to pass through the intersection during a red phase, thereby reducing idle time. Besides, various vehicle trajectory optimization strategies are tailored to different vehicle-following types, leveraging the capabilities of CAV technology. Enhanced microscopic behavior control strategies, such as car-following and lane-changing controls, are also developed for CAVs to improve their performance in mixed traffic. These strategies are integrated into the proposed framework. The effectiveness of the framework is validated through numerical experiments and sensitivity analysis, demonstrating its advantages in terms of traffic effectiveness, stability, and energy economy.

Keywords: traffic signal optimization, connected and automated vehicles, vehicle microscopic control, traffic control and information technology

Procedia PDF Downloads 10
30323 Understanding Willingness to Engage in pro-Environmental Behaviour among Recreational Anglers in South Africa

Authors: Kelvin Mwaba, Nicole Strickland

Abstract:

Background and Objectives: Overexploitation and illegal fishing have been identified as the primary cause of the global decline in the fish stock. While commercial companies and small-scale fishing sectors are strictly regulated in South Africa, recreational anglers are not. The underlying assumption seems to be that recreational anglers can self-regulate. The aim of the present study was to investigate the relationship that recreational anglers have with nature and how this relationship can predict unlawful fishing practices. Methods: Using a survey design, 99 self-identified recreational anglers were recruited through convenient sampling. The anglers were accessed from fishing tackle shops around False Bay in the Western Cape province of South Africa. Data was collected using a self-administered questionnaire that consisted of pro-environmental behavior survey and the Nature Relatedness Scale. Results: Data analyses indicated that significant differences with regard to nature relatedness on the basis of participants’ age and level of education. Older and more educated anglers scored higher on nature relatedness than younger and less educated anglers. Logistic regression analysis showed that nature relatedness was a significant predictor of pro-environmental behaviors (R²= 0.061). Discussion and Conclusion: The findings of the present study provide support regarding the importance of encouraging healthy and sustainable relationships between humans and nature. Combating harmful fishing practices can achieve through understanding and promoting human care for nature among anglers and others involved in fishing.

Keywords: pro-environmental, behavior, anglers, South Africa

Procedia PDF Downloads 370
30322 Transdisciplinarity Research Approach and Transit-Oriented Development Model for Urban Development Integration in South African Cities

Authors: Thendo Mafame

Abstract:

There is a need for academic research to focus on solving or contributing to solving real-world societal problems. Transdisciplinary research (TDR) provides a way to produce functional and applicable research findings, which can be used to advance developmental causes. This TDR study explores ways in which South Africa’s spatial divide, entrenched through decades of discriminatory planning policies, can be restructured to bring about equitable access to places of employment, business, leisure, and service for previously marginalised South Africans. It does by exploring the potential of the transit-orientated development (TOD) model to restructure and revitalise urban spaces in a collaborative model. The study focuses, through a case study, on the Du Toit station precinct in the town of Stellenbosch, on the peri-urban edge of the city of Cape Town, South Africa. The TOD model is increasingly viewed as an effective strategy for creating sustainable urban redevelopment initiatives, and it has been deployed successfully in other parts of the world. The model, which emphasises development density, diversity of land-use and infrastructure and transformative design, is customisable to a variety of country contexts. This study made use of case study approach with mixed methods to collect and analyse data. Various research methods used include the above-mentioned focus group discussions and interviews, as well as observation, transect walks This research contributes to the professional development of TDR studies that are focused on urbanisation issues.

Keywords: case study, integrated urban development, land-use, stakeholder collaboration, transit-oriented development, transdisciplinary research

Procedia PDF Downloads 133
30321 Serum 25-Hydroxyvitamin D Levels and Depression in Persons with Human Immunodeficiency Virus Infection: A Cross-Sectional and Prospective Study

Authors: Kalpana Poudel-Tandukar

Abstract:

Background: Human Immunodeficiency Virus (HIV) infection has been frequently associated with vitamin D deficiency and depression. Vitamin D deficiency increases the risk of depression in people without HIV. We assessed the cross-sectional and prospective associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and depression in a HIV-positive people. Methods: A survey was conducted among 316 HIV-positive people aged 20-60 years residing in Kathmandu, Nepal for a cross-sectional association at baseline, and among 184 participants without depressive symptoms at baseline who responded to both baseline (2010) and follow-up (2011) surveys for prospective association. The competitive protein-binding assay was used to measure 25(OH)D levels and the Beck Depression Inventory-Ia method was used to measure depression, with cut off score 20 or higher. Relationships were assessed using multiple logistic regression analysis with adjustment of potential confounders. Results: The proportion of participants with 25(OH)D level of <20ng/mL, 20-30ng/mL, and >30ng/mL were 83.2%, 15.5%, and 1.3%, respectively. Only four participants with 25(OH)D level of >30ng/mL were excluded in the further analysis. The mean 25(OH)D level in men and women were 15.0ng/mL and 14.4ng/mL, respectively. Twenty six percent of participants (men:23%; women:29%) were depressed. Participants with 25(OH)D level of < 20 ng/mL had a 1.4 fold higher odds of depression in a cross-sectional and 1.3 fold higher odds of depression after 18 months of baseline compared to those with 25(OH)D level of 20-30ng/mL (p=0.40 and p=0.78, respectively). Conclusion: Vitamin D may not have significant impact against depression among HIV-positive people with 25(OH)D level below normal ( > 30ng/mL).

Keywords: depression, HIV, Nepal, vitamin D

Procedia PDF Downloads 334
30320 Effect of Education Based-on the Health Belief Model on Preventive Behaviors of Exposure to ‎Secondhand Smoke among Women

Authors: Arezoo Fallahi

Abstract:

Introduction: Exposure to second-hand smoke is an important global health problem and threatens the health of people, especially children and women. The aim of this study was to determine the effect of education based on the Health Belief Model on preventive behaviors of exposure to second-hand smoke in women. Materials and Methods: This experimental study was performed in 2022 in Sanandaj, west of Iran. Seventy-four people were selected by simple random sampling and divided into an intervention group (37 people) and a control group (37 people). Data collection tools included demographic characteristics and a second-hand smoke exposure questionnaire based on the Health Beliefs Model. The training in the intervention group was conducted in three one-hour sessions in the comprehensive health service centers in the form of lectures, pamphlets, and group discussions. Data were analyzed using SPSS software version 21 and statistical tests such as correlation, paired t-test, and independent t-test. Results: The intervention and control groups were homogeneous before education. They were similar in terms of mean scores of the Health Belief Model. However, after an educational intervention, some of the scores increased, including the mean perceived sensitivity score (from 17.62±2.86 to 19.75±1.23), perceived severity score (28.40±4.45 to 31.64±2), perceived benefits score (27.27±4.89 to 31.94±2.17), practice score (32.64±4.68 to 36.91±2.32) perceived barriers from 26.62±5.16 to 31.29±3.34, guide for external action (from 17.70±3.99 to 22/89 ±1.67), guide for internal action from (16.59±2.95 to 1.03±18.75), and self-efficacy (from 19.83 ±3.99 to 23.37±1.43) (P <0.05). Conclusion: The educational intervention designed based on the Health Belief Model in women was effective in performing preventive behaviors against exposure to second-hand smoke.

Keywords: education, women, exposure to secondhand smoke, health belief model

Procedia PDF Downloads 74
30319 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan

Abstract:

Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 386
30318 Knowledge Sharing Model Based on Individual and Organizational Factors Related to Faculty Members of University

Authors: Mitra Sadoughi

Abstract:

This study presents the knowledge-sharing model based on individual and organizational factors related to faculty members. To achieve this goal, individual and organizational factors were presented through qualitative research in the form of open codes, axial, and selective observations; then, the final model was obtained using structural equation model. Participants included 1,719 faculty members of the Azad Universities, Mazandaran Province, Region 3. The samples related to the qualitative survey included 25 faculty members experienced at teaching and the samples related to the quantitative survey included 326 faculty members selected by multistage cluster sampling. A 72-item questionnaire was used to measure the quantitative variables. The reliability of the questionnaire was 0.93. Its content and face validity was determined with the help of faculty members, consultants, and other experts. For the analysis of quantitative data obtained from structural model and regression, SPSS and LISREL were used. The results showed that the status of knowledge sharing is moderate in the universities. Individual factors influencing knowledge sharing included the sharing of educational materials, perception, confidence and knowledge self-efficiency, and organizational factors influencing knowledge sharing included structural social capital, cognitive social capital, social capital relations, organizational communication, organizational structure, organizational culture, IT infrastructure and systems of rewards. Finally, it was found that the contribution of individual factors on knowledge sharing was more than organizational factors; therefore, a model was presented in which contribution of individual and organizational factors were determined.

Keywords: knowledge sharing, social capital, organizational communication, knowledge self-efficiency, perception, trust, organizational culture

Procedia PDF Downloads 394