Search results for: chronic obstructive pulmonary disease
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4814

Search results for: chronic obstructive pulmonary disease

3134 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 433
3133 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 78
3132 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 387
3131 Increased Risk of Adverse Birth Outcomes of Newborns in Arsenic Exposed- Women with Gestational Diabetes

Authors: Tania Mannan, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain

Abstract:

Background: Exposure to arsenic has known toxic effects but the effect on pregnancy outcomes is not as widely documented especially in women with diabetes. Growing evidence has suggested a potential role of arsenic exposure in the development of gestational diabetes mellitus (GDM). Therefore, we aimed to investigate the association of urinary arsenic (UAs) with birth outcomes in GDM subjects. Methods: Under an observational cross-sectional design a total of 263 GDM subjects (age in years, M±SD, 21±3.7) residing in an arsenic affected area of Bangladesh, were subjected to a 2 sample OGTT at the third trimester of gestation. Among them, 73 GDM and 190 non-GDM subjects enrolled in this study. Clinical and anthropometric measurements were done by standard techniques. Degree of chronic arsenic exposure was assessed by the level of UAs level. According to World Health Organization (WHO) criteria, GDM was diagnosed and neonatal outcomes using APGAR (Activity Pulse Grimace Appearance Respirations) Score, birth weight and size were assessed by a specialist obstetrician. Serum glucose was measured by the Glucose Oxidase method and UAs level was determined by ultraviolet/visible spectrophotometry. Result: Out of the 263 pregnant women, 28% developed GDM. Urinary Arsenic was significantly higher in the GDM as compared to the non-GDM group [UAs, µg/l, M±SD (range), 204.2±67.0 (67.0-377.0) vs 77.3±38.1 (22.0-99.0), p < 0.001]. Activity Pulse Grimace Appearance Respirations Score of the neonates from GDM mothers was significantly lower compared to the neonates from non-GDM mothers [APGAR Score, M±SD, 4.7±0.8 vs. 6.4±0.7, p<0.001]. Pearson’s correlation analysis in GDM subjects revealed that UA levels were found to have a significant positive correlation with both fasting and postprandial serum glucose levels (p < 0.001) and (p < 0.001) respectively. Again, a significant inverse correlation of UAs with birth weight and size was observed (p < 0.001). The APGAR Score of the neonates were found to have a significant negative correlation (p < 0.001) with UAs level. Conclusion: The effect of chronic arsenic exposure is associated with glucose intolerance during pregnancy and it also adversely affects birth outcomes. The study suggests further research on the impact of total arsenic exposure on pregnancy outcomes.

Keywords: APGAR score, arsenic exposure, birth outcome, gestational diabetes mellitus,

Procedia PDF Downloads 133
3130 Food Poisoning (Salmonellosis) as a Public Health Problem Through Consuming the Meat and Eggs of the Carrier Birds

Authors: M.Younus, M. Athar Khan, Asif Adrees

Abstract:

The present research endeavour was made to investigate the Public Health impact of Salmonellosis through consuming the meat and eggs of the carrier’s birds and to see the prevalence of Salmonella enteritidis and Salmonella typhimurium from poultry feed, poultry meat, and poultry eggs and their role in the chain of transmission of salmonellae to human beings and causing food poisoning. The ultimate objective was to generate data to improve the quality of poultry products and human health awareness. Salmonellosis is one of the most wide spread food borne zoonoses in all the continents of the world. The etiological agents Salmonella enteritidis and Salmonella typhimurium not only produce the disease but during the convalescent phase (after the recovery of disease) remain carriers for indefinite period of time. The carrier state was not only the source of spread of disease with in the poultry but also caused typhoid fever in humans. The chain of transmission started from poultry feed to poultry meat and ultimately to humans as dead end hosts. In this experiment a total number of 200 samples of human stool and blood were collected randomly (100 samples of human stool and 100 samples of human blood) of 100 patients suspected from food poisoning patients from different hospitals of Lahore area for the identification of Salmonella enteritidis and Salmonella typhimurium through PCR method in order to see the public health impact of Salmonellosis through consuming the meat and eggs of the carrier birds. On the average 14 and 10 stool samples were found positive against Salmonella enteritidis and Salmonella typhimurium from each of the 25 patients from each hospital respectively in case of suspected food poisoning patients. Similarly on an average 5% and 6% blood samples were found positive from 25 patients of each hospital respectively. There was a significant difference (P< 0.05) in the sero positivity of stool and blood samples of suspected food poisoning patients as far as Salmonella enteritidis and Salmonella typhimurium was concerned. However there was no significant difference (P<0.05) between the hospitals.

Keywords: salmonella, zoonosis, food, transmission, eggs

Procedia PDF Downloads 669
3129 Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense

Authors: Sakeh N. Mohd, Bahari M. N. Abdul, Abdullah S. N. Akmar

Abstract:

Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense.

Keywords: Ganoderma boninense, necrotrophic, next-generation sequencing, transcription factors

Procedia PDF Downloads 268
3128 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention

Authors: Kohkan Shamsi

Abstract:

Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.

Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention

Procedia PDF Downloads 123
3127 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 231
3126 Covid-19: Preparedness, Response, and Use of Video Technology in Managing Infection Rate at Lagos University Teaching Hospital, Lagos-Nigeria

Authors: Afolakemi Helen Olaleye, Ogunjobi A. O

Abstract:

Since coronavirus disease 2019 (COVID-19) was first reported in Nigeria, the virus has spread to virtually all sub-Saharan Africa (SSA) countries. In Nigeria, government agencies came together to create a goal-driven taskforce in improving our response against the virus. As COVID-19 international spread has been curtailed, community spread became rampant locally, leading to many health authorities raising concerns over the scarcity of medical consumables and supplies. Here at Lagos university teaching Hospital (LUTH), we present data analysis of COVID-19 infections offered at our Hospital (LUTH) and the surrounding communities. In addition, the adopted innovative solution to control the spread of infection, methods used in filling shortages of consumables, personal protective equipment (PPE), and use of mobile video technology in patient’s consultation. The management style and strategy adopted has led to a decline in infection rates in our community and among our front line staff. The current COVID -19 crisis has created an opportunity to test and demonstrate our pandemic response and control of infectious disease along with the revealed unknown potential in our community.

Keywords: COVID-19, preparedness, response, Lagos university teaching hospital

Procedia PDF Downloads 149
3125 Factors Affecting the Mental and Physical Health of Nurses during the Outbreak of COVID-19: A Case Study of a Hospital in Mashhad

Authors: Ghorbanali Mohammadi

Abstract:

Background: Due to the widespread outbreak of the COVID-19 virus, a large number of people become infected with the disease every day and go to hospitals. The acute condition of this disease has caused the death of many people. Since all the stages of treatment for these people happen in the hospitals, nurses are at the forefront of the fight against this virus. This causes nurses to suffer from physical and mental health problems. Methods: Physical and mental problems in nurses were assessed using the Depression, Anxiety and Stress Scale (DASS-42) of Lovibond (1995) and the Nordic Questionnaire. Results: 90 nurses from emergency, intensive care, and coronary care units were examined, and a total of 180 questionnaires were collected and evaluated. It was found that 37.78%, 47.78%, and 21.11% of nurses have symptoms of depression, anxiety, and stress, respectively. 40% of the nurses had physical problems. In total, 65.17% of them were involved in one or more mental or physical illnesses. Conclusions: Of the three units surveyed, the nurses in intensive care, emergency room, and coronary care units worked more than ten hours a day. Examining the interaction of physical and mental health problems indicated that physical problems can aggravate mental problems.

Keywords: depression anxiety and stress scale of Lovibond, nordic questionnaire, mental health of nurses, physical health problems in nurses

Procedia PDF Downloads 126
3124 Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury

Authors: Guy Rubin, Ravit Shay, Nimrod Rozen

Abstract:

The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery.

Keywords: digital nerve, injury, nerve examination, Semmes-Weinstein monofilamen, sensitivity, specificity, two point discrimination, wrinkle test

Procedia PDF Downloads 349
3123 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 391
3122 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 326
3121 Poster for Sickle Cell Disease and Barriers to Care in South Yorkshire from 2017 to 2023

Authors: Amardass Dhami, Clare Samuelson

Abstract:

Background: Sickle cell disease (SCD) is a complex, multisystem condition that significantly impacts patients' quality of life, characterized by acute illness episodes, progressive organ damage, and reduced life expectancy. In the UK, over 13,000 individuals are affected, with South Yorkshire having the fifth highest prevalence, including approximately 800 patients. Retinal complications in SCD can manifest as either proliferative or non-proliferative disease, with proliferative changes being more prevalent. These retinal issues can cause significant morbidity, including visual loss and increased care requirements, underscoring the need for regular monitoring. An integrated approach was applied to ensure timely interventions, ultimately enhancing patient outcomes and reduce ‘did not attend’ rates. Aim: To assess the factors which may influence attendance to Haematology and Ophthalmology Clinics with attention towards levels of deprivation towards non-attendance. Method : A retrospective study on 84 eligible patients, from the regional tertiary Centre for Sickle Cell Care (Sheffield Teaching Hospital) from 2017 to 2023. The study focused on the incidence of sickle cell eye disease, specifically examining the outcomes of patients who attended the combined haematology and ophthalmology clinics. Patients who did not attend either clinic were excluded from the analysis to ensure a clear understanding of the combined clinic's impact. This data was then compared with the United Kingdom’s Index of Multiple Deprivation (IMD) datasets to assess if inequalities of care affected this population. Results: The study concluded that the effectiveness of combining haematology and ophthalmology clinics was reduced following the intervention. The DNA rates increased to 40% for the haematology clinic. Additionally, a significant proportion of the cohort was classified as residing in areas of deprivation, suggesting a possible link between socioeconomic factors and non-attendance rates Conclusion: These findings underscore the challenges of integrating care for SCD patients, particularly in relation to socioeconomic barriers. Despite the intent to streamline care and improve patient outcomes, the increase in DNA rates points to the need for further investigation into the underlying causes of non-attendance. Addressing these issues, especially in deprived areas, could enhance the effectiveness of combined clinics and ensure that patients receive the necessary monitoring and interventions for their eye health and overall well-being. Future strategies may need to focus on improving accessibility, outreach, and support for patients to mitigate the impact of socioeconomic factors on healthcare attendance.

Keywords: south yorkshire, sickle cell anemia, deprivation, factors, haematology

Procedia PDF Downloads 30
3120 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 100
3119 Correlation between Total Polyphenol Content and Antimicrobial Activity of Opuntia ficus indica Extracts against Periodontopathogenic Bacteria

Authors: N. Chikhi-Chorfi, L. Arbia, S. Zenia, H.Lounici

Abstract:

Opuntia ficus-indica belongs to the Cactaceae family. The cactus is mainly cultivated for its fruit (prickly pear) that, eaten after pealing, is sweet and juicy, and rich in nutritional compounds, such as ascorbic acid and polyphenols. Different parts of O. ficus-indica are used in the traditional medicine of several countries: the cladodes are utilized to reduce serum cholesterol level and blood pressure, for treatment of ulcers, rheumatic pain, wounds, fatigue, capillary fragility, and liver conditions. This original study, investigate the effect of polyphenols of O. ficus indica (cactus) cladodes against periodontal bacteria collected from patients with periodontitis. The quantitative analysis of total polyphenols (TPP) was determined with Follin-Ciocalteu method. Different concentrations of extracts of O. ficus indica were tested by the disk method on two bacterial strains: Porphyromonas gingivalis and Prevotella intermedia responsible for periodontal disease. The results showed a good correlation between the concentration of total polyphenols and the antibacterial activity of the extracts of Opuntia ficus indica against P. gingivalis and P. intermedia with R² = 0.94 and R² = 0.90 respectively. This observation suggests that these extracts could be used in the treatment and prevention of periodontitis.

Keywords: periodontal disease, P. gingivalis, P. intermedia, polyphenols, Opuntia ficus indica

Procedia PDF Downloads 150
3118 Performance and Physiological Responses of Broiler Chickens to Diets Supplemented with Propolis in Breeding, to in Ovo Propolis Feeding or to Propolis Supplementation of Diets for Their Chicks

Authors: Kalbiye Konanc, Ergin Ozturk

Abstract:

To examine the effects of an ethanol liquid extract obtained from raw bee propolis (PE) on fattening performance and physiology such as vaccine-antibody relationship, microbial profile, immune status and some blood parameters of broiler chickens were used a total of 600 broiler (Ross 308) chicks, obtained from eggs of 288, 38-weeks-old broiler breeding. There were 6 groups: CC (Parent-Control and Offspring-Control, CP (Parent-Control and Offspring-propolis extract, Cip (Parent-Control and Offspring-in-ovo propolis extract), Cis (Parent-Control and Chickens-in-ovo saline), PeC (Parent-propolis extract and Offspring-Control), PeP (Parent-Propolis extract and Offspring-Propolis extract). Each group was consisted of 10 replications with 10 broiler offspring, and the experiment was lasted for 6 weeks with ethanol-extracted propolis concentration is 400 ppm/kg diet. While the highest feed consumptions at 0-21 days and 0-42 days were found in PeC, the best feed conversion ratio at 0-42 days was found in CP group. The live weight gains were found not to be different among the groups. The highest alanine aminotransferase activities were found in CC and CP and aspartate aminotransferase activities in PeP and PeC groups. The highest triglyceride and total antioxidant levels were found highest in CC and the highest total oxidant level in Cip group. IgA level in hatched eggs and IgM value after slaughtering were highest in Cip group. The best immune response was obtained for 21st day Newcastle Disease vaccine in CC and Cis groups and for 28th day Infectious Bursal Disease vaccine in CP group. The highest total aerobic microorganism and the lowest total fungi count were found in PeP group. In conclusion, it was determined that in-ovo propolis ethanol extract (Cip) increased the maternal antibody levels, that had not consistent effects on blood biochemical parameters except for triglyceride, that led to decrease in E. coli counts and that it can provide strong immune response against Infectious Bursal Disease.

Keywords: bee propolis, in-ovo feeding, immune parameters, poultry, maternal antibody, microorganisms

Procedia PDF Downloads 293
3117 The Clinical Effectiveness of Off-The-Shelf Foot Orthoses on the Dynamics of Gait in Patients with Early Rheumatoid Arthritis

Authors: Vicki Cameron

Abstract:

Background: Rheumatoid Arthritis (RA) typically effects the feet and about 20% of patients present initially with foot and ankle symptoms. Custom moulded foot orthoses (FO) in the management of foot and ankle problems in RA is well documented in the literature. Off-the-shelf FO are thought to provide an effective alternative to custom moulded FO in patients with RA, however they are not evidence based. Objectives: To determine the effects of off-the-shelf FO on; 1. quality of life (QOL) 2. walking speed 4. peak plantar pressure in the forefoot (PPPft) Methods: Thirty-five patients (six male and 29 female) participated in the study from 11/2006 to 07/2008. The age of the patients ranged from 26 to 80 years (mean 52.4 years; standard deviation [SD] 13.3 years). A repeated measures design was used, with patients presenting at baseline, three months and six months. Patients were tested walking barefoot, shod and shod with FO. The type of orthoses used was the Slimflex Plastic ® (Algeos). The Leeds Foot Impact Scale (LFIS) was used to investigate QOL. The Vicon 612 motion analysis system was used to determine the effect of FO on walking speed. The F-scan walkway and in-shoe systems provided information of the effect on PPPft. Ethical approval was obtained on 07/2006. Data was analysed using SPSS version 15.0. Results/Discussion: The LFIS data was analysed with a repeated measures ANOVA. There was a significant improvement in the LFIS score with the use of the FO over the six months (p<0.01). A significant increase in walking speed with the orthoses was observed (p<0.01). Peak plantar pressure in the forefoot was reduced with the FO, as shown by a non-parametric Friedman’s test (chi-square = 55.314, df=2, p<0.05). Conclusion: The results show that off-the-shelf FO are effective in managing foot problems in patients with RA. Patients reported an improved QOL with the orthoses, and further objective measurements were quantified to provide a rationale for this change. Patients demonstrated an increased walking speed, which has been shown to be associated with reduced pain. The FO decreased PPPft which have been reported as a site of pain and ulceration in patients with RA. Salient Clinical Points: Off-the-shelf FO offer an effective alternative to custom moulded FO, and can be dispensed at the chair side. This is crucial in the management of foot problems associated with RA as early intervention is advocated due to the chronic and progressive nature of the disease.

Keywords: podiatry, rheumatoid arthritis, foot orthoses, gait analysis

Procedia PDF Downloads 263
3116 Inferring Influenza Epidemics in the Presence of Stratified Immunity

Authors: Hsiang-Yu Yuan, Marc Baguelin, Kin O. Kwok, Nimalan Arinaminpathy, Edwin Leeuwen, Steven Riley

Abstract:

Traditional syndromic surveillance for influenza has substantial public health value in characterizing epidemics. Because the relationship between syndromic incidence and the true infection events can vary from one population to another and from one year to another, recent studies rely on combining serological test results with syndromic data from traditional surveillance into epidemic models to make inference on epidemiological processes of influenza. However, despite the widespread availability of serological data, epidemic models have thus far not explicitly represented antibody titre levels and their correspondence with immunity. Most studies use dichotomized data with a threshold (Typically, a titre of 1:40 was used) to define individuals as likely recently infected and likely immune and further estimate the cumulative incidence. Underestimation of Influenza attack rate could be resulted from the dichotomized data. In order to improve the use of serosurveillance data, here, a refinement of the concept of the stratified immunity within an epidemic model for influenza transmission was proposed, such that all individual antibody titre levels were enumerated explicitly and mapped onto a variable scale of susceptibility in different age groups. Haemagglutination inhibition titres from 523 individuals and 465 individuals during pre- and post-pandemic phase of the 2009 pandemic in Hong Kong were collected. The model was fitted to serological data in age-structured population using Bayesian framework and was able to reproduce key features of the epidemics. The effects of age-specific antibody boosting and protection were explored in greater detail. RB was defined to be the effective reproductive number in the presence of stratified immunity and its temporal dynamics was compared to the traditional epidemic model using use dichotomized seropositivity data. Deviance Information Criterion (DIC) was used to measure the fitness of the model to serological data with different mechanisms of the serological response. The results demonstrated that the differential antibody response with age was present (ΔDIC = -7.0). The age-specific mixing patterns with children specific transmissibility, rather than pre-existing immunity, was most likely to explain the high serological attack rates in children and low serological attack rates in elderly (ΔDIC = -38.5). Our results suggested that the disease dynamics and herd immunity of a population could be described more accurately for influenza when the distribution of immunity was explicitly represented, rather than relying only on the dichotomous states 'susceptible' and 'immune' defined by the threshold titre (1:40) (ΔDIC = -11.5). During the outbreak, RB declined slowly from 1.22[1.16-1.28] in the first four months after 1st May. RB dropped rapidly below to 1 during September and October, which was consistent to the observed epidemic peak time in the late September. One of the most important challenges for infectious disease control is to monitor disease transmissibility in real time with statistics such as the effective reproduction number. Once early estimates of antibody boosting and protection are obtained, disease dynamics can be reconstructed, which are valuable for infectious disease prevention and control.

Keywords: effective reproductive number, epidemic model, influenza epidemic dynamics, stratified immunity

Procedia PDF Downloads 263
3115 Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production

Authors: Ali Montazar

Abstract:

This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase.

Keywords: alfalfa, onions, spinach, sugar beets, subsurface drip irrigation

Procedia PDF Downloads 132
3114 The Effect of Excess Sulphur on Najdi Sheep

Authors: Fatima Al-Humaid

Abstract:

This research work was done to investigate the cause of paralysis in Najdi lambs born in certain farms where the drinking water and diet contained high concentrations of sulphur. The drinking water in these farms was obtained from deep bore wells drilled in the farm. The lambs developed paralysis of the hind limbs at the age of 4-6 weeks and their condition deteriorated continuously until they finally died. The appetite and suckling ability remained good throughout the course of the disease but when the lambs were completely unable to move and reach for the udder, feed and water they died. Postmortem examination of the brain of paralyzed lambs showed that it was liquefied. When the brain was examined histologically, a liquefactive necrosis was seen in the form of cavities in the nervous tissue. Similar histologic picture was seen in the spinal cord of the affected lambs. Analysis for the mineral content of the fodder showed that the concentration of sulphur was 21.6 3.4 g/kg DM which is considered very high for the nutrition of sheep. Analysis for the concentration of copper and selenium in the feed showed that the concentrations of both were normal. This excluded diseases such as swayback which is caused by copper deficiency and white muscle disease, which caused by selenium deficiency. Both of these two last diseases are characterized by paralysis of lambs.

Keywords: brain histology, sulphur poisoning, Najdi sheep, veterinary medicine

Procedia PDF Downloads 610
3113 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 77
3112 Cost-Effectiveness of a Certified Service or Hearing Dog Compared to a Regular Companion Dog

Authors: Lundqvist M., Alwin J., Levin L-A.

Abstract:

Background: Assistance dogs are dogs trained to assist persons with functional impairment or chronic diseases. The assistance dog concept includes different types: guide dogs, hearing dogs, and service dogs. The service dog can further be divided into subgroups of physical services dogs, diabetes alert dogs, and seizure alert dogs. To examine the long-term effects of health care interventions, both in terms of resource use and health outcomes, cost-effectiveness analyses can be conducted. This analysis can provide important input to decision-makers when setting priorities. Little is known when it comes to the cost-effectiveness of assistance dogs. The study aimed to assess the cost-effectiveness of certified service or hearing dogs in comparison to regular companion dogs. Methods: The main data source for the analysis was the “service and hearing dog project”. It was a longitudinal interventional study with a pre-post design that incorporated fifty-five owners and their dogs. Data on all relevant costs affected by the use of a service dog such as; municipal services, health care costs, costs of sick leave, and costs of informal care were collected. Health-related quality of life was measured with the standardized instrument EQ-5D-3L. A decision-analytic Markov model was constructed to conduct the cost-effectiveness analysis. Outcomes were estimated over a 10-year time horizon. The incremental cost-effectiveness ratio expressed as cost per gained quality-adjusted life year was the primary outcome. The analysis employed a societal perspective. Results: The result of the cost-effectiveness analysis showed that compared to a regular companion dog, a certified dog is cost-effective with both lower total costs [-32,000 USD] and more quality-adjusted life-years [0.17]. Also, we will present subgroup results analyzing the cost-effectiveness of physicals service dogs and diabetes alert dogs. Conclusions: The study shows that a certified dog is cost-effective in comparison with a regular companion dog for individuals with functional impairments or chronic diseases. Analyses of uncertainty imply that further studies are needed.

Keywords: service dogs, hearing dogs, health economics, Markov model, quality-adjusted, life years

Procedia PDF Downloads 156
3111 Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram

Authors: Vasudha Devi, Arul Amuthan, K. Narayanan, Praveen KS, Venkata Rao J

Abstract:

Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically.

Keywords: Neeradi muthu vallathymezugu (Hydnocarpus laurifolia), thamira kattu chendooram, cytotoxicity, in-vitro, Siddha Medicine

Procedia PDF Downloads 482
3110 Association Type 1 Diabetes and Celiac Disease in Adult Patients

Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) and type 1 diabetes mellitus (T1D) are complex disorders with shared genetic components. The association between CD and T1D has been reported in many pediatric series. The aim of our study is to describe the epidemiological, clinical and evolutive characteristics of adult patients presenting this association. Material and Methods: This is a retrospective study including patients diagnosed with CD and T1D, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and June 2016. Results: Among 57 patients with CD, 15 patients had also T1D (26.3%). There are 11 women and 4 men with a median age of 27 years (16-48). All patients developed T1D prior to the diagnosis of CD with an average duration of 47 months between the two diagnosis (6 months-5 years). CD was revealed by recurrent abdominal pain in 11 cases, diarrhea in 10 cases, bloating in 8 cases, constipation in 6 cases and vomiting in 2 cases. Three patients presented cycle disorders with secondary amenorrhea in 2 patients. Anti-Endomysium, anti-transglutaminase and Anti-gliadin antibodies were positive respectively in 57, 54 and 11 cases. The biological tests revealed anemia in 10 cases, secondary to iron deficiency in 6 cases and folate and vitamin B12 deficiency in 4 cases, hypoalbuminaemia in 4 cases, hypocalcemia in 3 cases and hypocholesterolemia in 1 patient. Upper gastrointestinal endoscopy showed an effacement of the folds of the duodenal mucosa in 6 cases and a congestive duodenal mucosa in 3 cases. The macroscopic appearance was normal in the others cases. Microscopic examination showed an aspect of villous atrophy in 57 cases, which was partial in 10 cases and total in 47 cases. After an average follow-up of 3 years 2 months, the evolution was favorable in all patients under gluten-free diet with the necessity of less important doses of insulin in 10 patients. Conclusion: In our study, the prevalence of T1D in adult patients with CD was 26.3%. This association can be attributed to overlapping genetic HLA risk loci. In recent studies, the role of gluten as an important player in the pathogenesis of CD and T1D has been also suggested.

Keywords: celiac disease, gluten, prevalence, type 1 diabetes

Procedia PDF Downloads 255
3109 Clinical Empathy: The Opportunity to Offer Optimal Treatment to People with Serious Illness

Authors: Leonore Robieux, Franck Zenasni, Marc Pocard, Clarisse Eveno

Abstract:

Empirical data in health psychology studies show the necessity to consider the doctor-patient communication and its positive impact on outcomes such as patients’ satisfaction, treatment adherence, physical and psychological wellbeing. In this line, the present research aims to define the role and determinants of an effective doctor–patient communication during the treatment of patients with serious illness (peritoneal carcinomatosis). We carried out a prospective longitudinal study including patients treated for peritoneal carcinomatosis of various origins. From November 2016, to date, data were collected using validated questionnaires at two times of evaluation: one month before the surgery (T0) and one month after (T1). Thus, patients reported their (a) anxiety and depression levels, (b) standardized and individualized quality of life and (c) how they perceived communication, attitude and empathy of the surgeon. 105 volunteer patients (Mean age = 58.18 years, SD = 10.24, 62.2% female) participated to the study. PC arose from rare diseases (14%), colorectal (38%), eso-gastric (24%) and ovarian (8%) cancer. Three groups are defined according to the severity of their pathology and the treatment offered to them: (1) important surgical treatment with the goal of healing (53%), (2) repeated palliative surgical treatment (17%), and (3) the patients recused for surgical treatment, only palliative approach (30%). Results are presented according to Baron and Kenny recommendations. The regressions analyses show that only depression and anxiety are sensitive to the communication and empathy of surgeon. The main results show that a good communication and high level of empathy at T0 and T1 limit depression and anxiety of the patients in T1. Results also indicate that the severity of the disease modulates this positive impact of communication: better is the communication the less are the level of depression and anxiety of the patients. This effect is higher for patients treated for the more severe disease. These results confirm that, even in the case severe disease a good communication between patient and physician remains a significant factor in promoting the well-being of patients. More specific training need to be developed to promote empathic care.

Keywords: clinical empathy, determinants, healthcare, psychological wellbeing

Procedia PDF Downloads 126
3108 Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur

Authors: Arundhati Devi Maibam, K. Ingocha Singh

Abstract:

Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.

Keywords: cervical cancer, Manipuri women, RIIMS, socio-demographic risk factors

Procedia PDF Downloads 276
3107 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia

Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri

Abstract:

Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.

Keywords: toxicities, benzene, hormones, station workers

Procedia PDF Downloads 94
3106 Feasibility and Impact of the Community Based Supportive Housing Intervention for Individuals with Chronic Mental Illness in Bangladesh

Authors: Rubina Jahan, Mohammad Zayeed Bin Alam, Razia Sultana, Md. Faroque Miah

Abstract:

Mental health remains a significant global public health challenge, profoundly affecting millions worldwide. In Bangladesh, the situation is dire, with the National Mental Health Survey 2018-19 indicating that 19% of adults suffer from any kind of mental disorders, including severe mental disorder of around 2%. Despite these high prevalence rates, there is a substantial treatment gap in low- and middle-income countries, including Bangladesh, where up to 92% of individuals with mental illnesses do not receive adequate care. This gap is exacerbated by social barriers such as stigma, discrimination, social exclusion, poverty, homelessness, and human rights violations. To address these challenges, the SAJIDA Foundation launched the Proshanti in November 2022. Proshanti is a community based supportive housing intervention designed to provide cost-effective, sustainable, long-term care for individuals with chronic mental illnesses. It aims to rehabilitate participants by improving their mental health, quality of life, and equipping them with skills necessary for independent living and social mobility. Currently, Proshanti operates seven houses in Manikganj and Habiganj districts of Bangladesh, accommodating up to 40 individuals. Over a two-year period, individuals have received personalized support from trained personal assistants and care coordinators, regular health checkups, and opportunities for vocational training and community engagement. In this presentation, we will present the outcome of such intervention on individual’s functionality, quality of life and psychological health generated from 24 months of journey. Additionally, a qualitative approach will be employed to understand the facilitators and barriers of program implementation. The Proshanti program represents a promising model for addressing the significant mental health treatment gap in Bangladesh at the community level. Our findings will provide crucial insights into the program's feasibility, effectiveness, and the factors influencing its implementation, potentially guiding future mental health interventions in similar contexts.

Keywords: mental health, community based supportive housing, treatment gap, bangladesh

Procedia PDF Downloads 56
3105 LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia

Authors: Adenike Adesanya, Nonthaphat Wong, Xiang-Yun Lan, Shea Ping Yip, Chien-Ling Huang

Abstract:

Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs.

Keywords: chronic myeloid leukemia, imatinib resistance, lncRNA-miRNA-mRNA, T315I mutation

Procedia PDF Downloads 163