Search results for: metabolic networks
1906 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens
Authors: Qingfang Guo
Abstract:
Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9
Procedia PDF Downloads 331905 Weak Electric Fields Enhance Growth and Nutritional Quality of Kale
Authors: So-Ra Lee, Myung-Min Oh
Abstract:
Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240).Keywords: electroculture, electric signal, faraday cage, electric field
Procedia PDF Downloads 2931904 A Survey of Attacks and Security Requirements in Wireless Sensor Networks
Authors: Vishnu Pratap Singh Kirar
Abstract:
Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements
Procedia PDF Downloads 4931903 Illness Perception and Health-Related Quality of Life among Young Females Living with Polycystic Ovary Syndrome
Authors: Vibha Kriti
Abstract:
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder generally found in reproductive women. It is associated with significant reproductive, metabolic, cosmetic, and psychological consequences. Objective: There is a high prevalence of PCOS found among reproductive-age women, therefore, the major objective of the present study is to identify the illness perception of PCOS women and to explore the relationship between illness perception and health-related quality of life (HRQoL). Material and Method: A cross-sectional study was conducted in a university tertiary-care center, Sir Sunder Lal Hospital, Banaras Hindu University (B.H.U). Tools used for data collection were self-structured, which included socio-demographic status, illness perception questionnaire (revised version), and short-form 36 for assessing illness perception and health-related quality of life, respectively. Statistical analysis was done by SPSS version ‘24’. Results: The results of correlation analyses indicated that there is a strong relationship between strong illness perception and HRQoL. Stepwise regression indicated that illness identity, long illness duration, and severe consequences were associated with the worse outcome on emotional functioning and on social functioning. A high score on the controllability of the disease and seeking social support was significantly related to better functioning. Conclusion: Illness perception is an important factor in self-care behaviors in PCOS females and has a strong association with health-related quality of life and has a profound effect on it.Keywords: polycystic ovary syndrome, illness perception, quality of life, young females, mental health
Procedia PDF Downloads 941902 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.Keywords: real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions
Procedia PDF Downloads 3891901 Polycystic Ovary Syndrome: Cervical Cytology Features and Its Association with Endometrial Cancer
Authors: Faezah Shekh Abdullah, Mohd. Azizuddin Mohd. Yussof, Komathy Thiagarajan, Hasnoorina Husin, Noor Azreena Abd Aziz
Abstract:
Polycystic ovary syndrome has been associated with multiple disorders such as endocrine disorder, metabolic syndrome, infertility, and endometrial cancer. Women with polycystic ovary syndrome (PCOS) are anticipated to develop three times more chances for endometrial cancer than women without PCOS. This study, therefore, was conducted to determine the association between polycystic ovary syndrome and endometrial cancer and to determine the cervical cytology features of PCOS. Patients attending the Subfertility Clinic of the National Population and Family Development Board were recruited and examined physically by medical practitioners. They were categorized into two groups; i) the PCOS group if they met Rotterdam Criteria 2004 and ii) the control group if they did not meet Rotterdam Criteria 2004. Cervical sampling was done on all patients via the Liquid-Based Cytology (LBC) method in the pre-and post-subfertility treatment. A total of 167 patients participated in the study, of which 79 belonged to the PCOS group and 88 to the control group. The findings showed no cervical and endometrial cancer cases in both groups. The Liquid-Based Cytology results in the PCOS group displayed more cases with cellular changes, i.e., benign inflammation, atrophic smear and Candida sp. infection. To conclude, no association was found between polycystic ovary syndrome and endometrial cancer. A more holistic study with a higher number of participants can further determine the association between endometrial cancer and PCOS. Furthermore, a longer duration between LBC pre- and post-subfertility treatment should be implied to observe changes in the cervical cells.Keywords: endometrial cancer, liquid-based cytology, PCOS, polycystic ovary syndrome
Procedia PDF Downloads 1461900 The Use of Metformin in Treatment of Polycystic Ovary Syndrome (PCOS) and Glucose Control in Pregnant Women with Gestational Diabetes Mellitus (GDM) at Tripoli Medical Center
Authors: Ebtisam A. Benomran, Abdurrauf M. Gusbi, Malak S. Elazarg, M. Sultan, Layla M. Kafu, Arwa M. Matoug, Esra E. Benamara
Abstract:
Normal pregnancy is associated with metabolic changes leading to decreased insulin sensitivity and reduced glucose tolerance, however, 3-5% of pregnant women proceed to develop gestational diabetes mellitus (GDM). Researcher studied the use of metformin in many fields and the benefit to risk balance of using metformin during pregnancy and the risk of fetotoxic. In this study we examined the use of Metformin to control Glucose in pregnant Women with gestational diabetes mellitus (GDM) and evaluate its safety use during the first trimester of pregnancy.A group of pregnant patients with gestational diabetes mellitus from the first trimester of pregnancy, non smoking with no family history of congenital malformation disease, aged between (20-45 years) and have no liver diseases and who had indicating good compliance at more than one visit over several month until delivery put on Metformin were participated in this trial. Our study shown that all the studied group of pregnant women using metformin 500 mg daily delivered a healthy babies. Meta-analysis by mother risk program showed no increase in incidence of malformations by use Metformin during the first trimester of pregnancy. A hundred outpatients were participated in the survey on the general knowledge and awareness of diabetic patients to their illness and medication used their aged between 20-40 years old. In this survey we realize that 90% of the doctors are not giving the patient full information about their illness and the use of metformin during pregnancy, also about 65% of the patients did not know about the nutritionist in the hospital and the right control diet for diabetes. Courses on first aid, rapid diagnosis of poisoning and follow the written procedures to dealing with such cases.Keywords: gestational diabetes, malformations, metformin, pregnancy
Procedia PDF Downloads 4951899 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems
Authors: Joachim F. Sartor
Abstract:
According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage
Procedia PDF Downloads 1531898 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 1351897 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1321896 Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line
Authors: Renata Rank Miranda, Arandi Ginane Bezerra, Ciro Alberto Oliveira Ribeiro, Marco AntôNio Ferreira Randi, Carmen Lúcia Voigt, Lilian Skytte, Kaare Lund Rasmussen, Francisco Filipak Neto, Frank Kjeldsen
Abstract:
Synergetic and antagonistic effects of drugs are well-known concerns in pharmacological assessments of dose and toxicity. Similar approach should be used in assessing cellular uptake and cytotoxicity of nanoparticles. Since nanoparticles are released into the aquatic environment they may interact with existing xenobiotics. Here we used biochemical assays and quantitative proteomics to assess the cytotoxicity of silver nanoparticles (AgNP) when human hepatoma HepG2 cells were co-exposed to 2 nm AgNP together with either Cd2+ or Hg2+ ions. Time-course experiments (2h, 4h, and 24h) were conducted to assess the first response to the exposure studies. The general trend was that a synergetic toxicological response was observed in cells exposed to both AgNP and Cd2+ or Hg2+, with AgNP and Cd2+ being more toxic. This was observed by a significant increase in the ROS and superoxide level of >35% in the case of AgNP+Cd2+ compared to the sum of responses of AgNP and Cd2+, individually. Metabolic activity and viability also dropped more for AgNP+Cd2+ (>10%) than for AgNP and Cd2+ combined. We used inductively coupled plasma mass spectrometry to investigate if AgNP facilitates larger influx of toxic metal ions into HepG2 cells. Only Hg2+ ions was found to be more efficiently engulfed as the concentration of Hg2+ was found 2.8 times larger compared to exposure experiments with only Hg2+. This effect was not observed for Cd2+. We now continue with deep proteomics studies to obtain wider details on the mechanism of the toxicity related to AgNP, Cd2+, and AgNP+Cd2+, respectively.Keywords: nanotoxicology, silver nanoparticles, proteomics, human cell line
Procedia PDF Downloads 3501895 Exploring Barriers to Social Innovation: Swedish Experiences from Nine Research Circles
Authors: Claes Gunnarsson, Karin Fröding, Nina Hasche
Abstract:
Innovation is a necessity for the evolution of societies and it is also a driving force in human life that leverages value creation among cross-sector participants in various network arrangements. Social innovations can be characterized as the creation and implementation of a new solution to a social problem, which is more effective and sustainable than existing solutions in terms of improvement of society’s conditions and in particular social inclusion processes. However, barriers exist which may restrict the potential of social innovations to live up to its promise as a societal welfare promoting driving force. The literature points at difficulties in tackling social problems primarily related to problem complexity, access to networks, and lack of financial muscles. Further research is warranted at detailed at detail clarification of these barriers, also connected to recognition of the interplay between institutional logics on the development of cross-sector collaborations in networks and the organizing processes to achieve innovation barrier break-through. There is also a need to further elaborate how obstacles that spur a difference between the actual and desired state of innovative value creating service systems can be overcome. The purpose of this paper is to illustrate barriers to social innovations, based on qualitative content analysis of 36 dialogue-based seminars (i.e. research circles) with nine Swedish focus groups including more than 90 individuals representing civil society organizations, private business, municipal offices, and politicians; and analyze patterns that reveal constituents of barriers to social innovations. The paper draws on central aspects of innovation barriers as discussed in the literature and analyze barriers basically related to internal/external and tangible/intangible characteristics. The findings of this study are that existing institutional structures highly influence the transformative potential of social innovations, as well as networking conditions in terms of building a competence-propelled strategy, which serves as an offspring for overcoming barriers of competence extension. Both theoretical and practical knowledge will contribute to how policy-makers and SI-practitioners can facilitate and support social innovation processes to be contextually adapted and implemented across areas and sectors.Keywords: barriers, research circles, social innovation, service systems
Procedia PDF Downloads 2591894 Selection of Potential Starter Using Their Transcription Level
Authors: Elif Coskun Daggecen, Seyma Dokucu, Yekta Gezginc, Ismail Akyol
Abstract:
Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results.Keywords: gene expression, RT-PCR, starter culture, Streptococcus thermophilus
Procedia PDF Downloads 1911893 The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)
Authors: Vanessa Caroline De Barros Bonato, Bruna Lima Gomes, Luciano Freschi, Eduardo Purgatto
Abstract:
The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening.Keywords: aroma compounds, fruit ripening, fruit quality, phytohormones
Procedia PDF Downloads 4001892 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network
Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi
Abstract:
Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.Keywords: all-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk
Procedia PDF Downloads 4661891 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 1311890 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 861889 Analysis of the IEEE 802.15.4 MAC Parameters to Achive Lower Packet Loss Rates
Authors: Imen Bouazzi
Abstract:
The IEEE-802.15.4 standard utilizes the CSMA-CA mechanism to control nodes access to the shared wireless communication medium. It is becoming the popular choice for various applications of surveillance and control used in wireless sensor network (WSN). The benefit of this standard is evaluated regarding of the packet loss probability who depends on the configuration of IEEE 802.15.4 MAC parameters and the traffic load. Our exigency is to evaluate the effects of various configurable MAC parameters on the performance of beaconless IEEE 802.15.4 networks under different traffic loads, static values of IEEE 802.15.4 MAC parameters (macMinBE, macMaxCSMABackoffs, and macMaxFrame Retries) will be evaluated. To performance analysis, we use ns-2[2] network simulator.Keywords: WSN, packet loss, CSMA/CA, IEEE-802.15.4
Procedia PDF Downloads 3421888 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 911887 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks
Authors: Andrew D. Henshaw, James M. Austin
Abstract:
Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money
Procedia PDF Downloads 941886 Possible Mechanism of DM2 Development in OSA Patients Mediated via Rev-Erb-Alpha and NPAS2 Proteins
Authors: Filip Franciszek Karuga, Szymon Turkiewicz, Marta Ditmer, Marcin Sochal, Piotr Białasiewicz, Agata Gabryelska
Abstract:
Circadian rhythm, an internal coordinator of physiological processes is composed of a set of semi-autonomous clocks. Clocks are regulated through the expression of circadian clock genes which form feedback loops, creating an oscillator. The primary loop consists of activators: CLOCK, BMAL1 and repressors: CRY, PER. CLOCK can be substituted by the Neuronal PAS Domain Protein 2 (NPAS2). Orphan nuclear receptor (REV-ERB-α) is a component of the secondary major loop, modulating the expression of BMAL1. Circadian clocks might be disrupted by the obstructive sleep apnea (OSA), which has also been associated with type II diabetes mellitus (DM2). Interestingly, studies suggest that dysregulation of NPAS2 and REV-ERB-α might contribute to the pathophysiology of DM2 as well. The goal of our study was to examine the role of NPAS2 and REV-ERB-α in DM2 in OSA patients. After examination of the clinical data, all participants underwent polysomnography (PSG) to assess their apnea-hypopnea index (AHI). Based on the acquired data participants were assigned to one of 3 groups: OSA (AHI>30, no DM2; n=17 for NPAS2 and 34 for REV-ERB-α), DM2 (AHI>30 + DM2; n=7 for NPAS2 and 15 for REV-ERB-α) and control group (AHI<5, no DM2; n=16 for NPAS2 and 31 for REV-ERB-α). ELISA immunoassay was performed to assess the serum protein level of REV-ERB-α and NPAS2. The only statistically significant difference between groups was observed in NPAS2 protein level (p=0.037). Post-hoc analysis showed significant differences between the OSA and the control group (p=0.017). AHI and NPAS2 level was significantly correlated (r=-0.478, p=0.002) in all groups. A significant correlation was observed between the REV-ERB-α level and sleep efficiency (r=0.617, p=0.005) as well as sleep maintenance efficiency (r=0.645, p=0.003) in the OSA group. We conclude, that NPAS2 is associated with OSA severity and might contribute to metabolic sequelae of this disease. REV-ERB-α on the other hand can influence sleep continuity and efficiency.Keywords: OSA, diabetes mellitus, endocrinology, chronobiology
Procedia PDF Downloads 1561885 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes
Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini
Abstract:
Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T
Procedia PDF Downloads 2681884 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii
Authors: Dake Xiong, Ben Hankamer, Ian Ross
Abstract:
The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase
Procedia PDF Downloads 2641883 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells
Authors: B. Samuel Raj, Solomon R. D. Jebakumar
Abstract:
Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell
Procedia PDF Downloads 3531882 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing
Authors: Andrew Hall, Paul Clarkson
Abstract:
Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change
Procedia PDF Downloads 2091881 Critical Success Factors for Implementation of E-Supply Chain Management
Authors: Mehrnoosh Askarizadeh
Abstract:
Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource
Procedia PDF Downloads 4111880 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit
Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman
Abstract:
In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)
Procedia PDF Downloads 1841879 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4721878 Simultaneous Determination of Bisphenol a, Phtalates and Its Metabolites in Human Urine, by Tandem SPE Coupled to GC-MS
Authors: L. Correia-Sá, S. Norberto, Conceição Calhau, C. Delerue-Matos, V. F. Domingues
Abstract:
Endocrine disruptor chemicals (EDCs) are synthetic compounds that even though being initially designed for a specific function are now being linked with a wide range of side effects. The list of possible EDCs is growing and includes phthalates and bisphenol A (BPA). Phthalates are one of the most widely used plasticizers to improve the extensibility, elasticity and workability of polyvinyl chloride (PVC), polyvinyl acetates, etc. Considered non-toxic and harmless additives for polymers, they were used unrestrainedly all over the world for several decades. However, recent studies have indicated that some phthalates and their metabolic products are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. BPA (2,2-bis(4-hydroxyphenyl)propane) is a high production volume chemical mainly used in the production of polycarbonate plastics and epoxy resins. Although BPA was initially considered to be a weak environmental estrogen, nowadays it is known that this compound can stimulate several cellular responses at very low levels of concentrations. The aim of this study was to develop a method based on tandem SPE to evaluate the presence of phthalates, metabolites and BPA in human urine samples. The analyzed compounds included: dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), BPA, mono-isobutyl phthalate (MiBP), monobutyl phthalate (MBP) and. mono-(2-ethyl-5-oxohexyl) (MEOHP). Two SPE cartridges were applied both from Phenomenex, the strata X polymeric reversed phase and the strata X A (Strong anion). Chromatographic analyses were carried out in a Thermo GC ULTRA GC-MS/MS. Good recoveries and linear calibration curves were obtained. After validation, the methodology was applied to human urine samples for phthalates, metabolites and BPA evaluation.Keywords: Bisphenol A (BPA), gas chromatography, metabolites, phtalates, SPE, tandem mode
Procedia PDF Downloads 2911877 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field
Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson
Abstract:
Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat
Procedia PDF Downloads 267