Search results for: 3D cell viability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4062

Search results for: 3D cell viability

2412 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah

Abstract:

The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 114
2411 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 206
2410 Hematological Changes in the Hydatidosed Male Sheep after Experimental Inoculation of Echinococcus granulosus Eggs

Authors: M. Younus, Muhammad Shafique, M. Athar Khan, Tanveer Akhtar , M. Moeen Athar

Abstract:

A total of 48 apparently healthy weaned sheep lambs (Ovis aries) of 8-10 weeks old weighing 7-10 Kg were purchased from the contractors, maintained in the experimental station of University of the Punjab, Quaid-e-Azam Campus at Lahore, Pakistan. They were dewormed against nematodes with levamisole (ICI) at recommended dose rates. The feces were tested against the parasitic eggs, no helminths ova were seen. All the 48 sheep lambs were divided into two groups i.e. group A & group B. Group 'A' comprising of 40 sheep, kept as infected groups whereas group 'B' comprising of 08 sheep & kept as a new infected control group. Each sheep lamb of group A was given 3-4 fresh gravid segments contains 2-3 thousand eggs of Echinococcus granulosus. These were collected from experimentally infected dogs by feeding fresh hydrated cysts collected from liver & lungs of sheep after slaughtering. Each lamb was fed with fresh gravid segments for a total period of 5 days or each alternate day. Coagulated blood was collected before the start of infected diet and after every month by jugular phlebotomy of each sheep lamb from the infected & new infected control group. One lamb each from group A & group B was slaughtered at the end of each month for the presence of macroscopic hydatid cyst in viscera & abdominal cavity. After 180 days of the experiment, hydatid cysts were confirmed in the abdominal cavity. Hematological parameters of zero days & then at the end of every month revealed that there was a gradual increase (PL 0.05) in the White Blood Cell (WBC), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin Concentration (MCHC) and Erythrocyte Sedimentation Rates (ESR). The increasing trend was probably due to inflammatory response and lytic effect of the newly developing E. granulosus hydatid cysts. The red blood cell (RBC), Hemoglobin (HB), Packed Cell Volume (PCV) and Mean Corpuscular Hemoglobin (MCH) infected groups were decreased significantly as compared to the control group (PL 0.05). The experiment was terminated at the end of the 7th month. It can be concluded that Echinococcus granulosus can damage livestock and other intermediate hosts such as horses, the development of hydatid cysts affect the organs due to the growing cysts pressuring the organ tissues. Parts of the tissue die, which impairs the functioning of the affected organ. The clinical signs depend on the affected organ. The major damage for livestock is organ condemnation at slaughter.

Keywords: echinococcus granulosus, hydatidosis, sheep, hematology

Procedia PDF Downloads 413
2409 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 240
2408 Effect of Seasonal Variation on Two Introduced Columbiformes in Awba Dam Tourism Centre, University of Ibadan, Ibadan

Authors: Kolawole F. Farinloye, Samson O. Ojo

Abstract:

Two Columbiformes species were recently introduced to the newly established Awba Dam Tourism Centre [ADTC], hence there is need to investigate the effect of seasonal variation on these species with respect to hematological composition. Blood samples were obtained from superficial ulna vein of the 128 apparently healthy C. livia and C. guinea into tubes containing EDTA as anticoagulant. Thin blood smears (TBS) were prepared, stained and viewed under microscope. Values of Red Blood Cell (RBC) count, White Blood Cell (WBC) count, cholesterol (CH), Uric Acid (UA), Protein (PR), Mean Corpuscular Volume (MCV), Haemoglobin Content (HB), Blood Volume (BV), Plasma Glucose (PG) and Length/Width (L/W) ratio of red blood cells were assessed. The procedure was carried out on a seasonal basis (wet and dry seasons of 2013-2014). Data was analyzed using descriptive and inferential statistics. Lymphocyte count for C. livia was F3, 161 = 13.15, while for C. guinea was F3, 178 = 13.15. Heterophil, H/L ratio and Muscle score values for both species were (rs = -0.38, rs = -0.44), (rs = 0.51, rs = 0.31) (4, 3) respectively. Analyses also demonstrated a low WBC to RBC ratio (0.004: 25.3) in both species during the wet season compared to dry season, respectively. L/W varied significantly among sampling seasons i.e. wet (19.1% of BV, 12.6% of BV, 0.1% of BV) and dry (18.9% of BV, 12.7% of BV, 0.08% of BV). The level of HB in wet season (19.20±8.46108) is lower compared to dry season (19.70±8.48762). T-test also showed (wet=15.625, 0.111), (dry=12.125, 0.146) respectively, hence there is no association between species and haematological parameters. Species introduced were found to be haematologically stable. Although there were slight differences in seasonal composition, however this can be attributed to seasonal variation; suggesting little or no effect of seasons on their blood composition.

Keywords: seasonal variation, Columbiformes, Awba Dam tourism centre, University of Ibadan, Ibadan

Procedia PDF Downloads 335
2407 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 90
2406 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 184
2405 Association of Single Nucleotide Polymorphisms in Leptin and Leptin Receptors with Oral Cancer

Authors: Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Leptin (LEP) and leptin receptor (LEPR) both play a crucial role in the mediation of physiological reactions and carcinogenesis and may serve as a candidate biomarker of oral cancer. The present case-control study aimed to examine the effects of single nucleotide polymorphisms (SNPs) of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) with or without interacting to environmental carcinogens on the risk for oral squamous cell carcinoma (OSCC). The SNPs of three genetic allele, from 567 patients with oral cancer and 560 healthy controls in Taiwan were analyzed. All of The three genetic polymorphisms exhibited insignificant (P > .05) effects on the risk to have oral cancer. However, the patients with polymorphic allele of LEP -2548 have a significant low risk for the development of clinical stage (A/G, AOR = 0.670, 95% CI = 0.454–0.988, P < .05; A/G+G/G, AOR = 0.676, 95% CI = 0.467–0.978, P < .05) compared to patients with ancestral homozygous A/A genotype. Additionally, an interesting result was found that the impact of LEP -2548 G/A SNP on oral carcinogenesis in subjects without tobacco consumption (A/G, AOR=2.078, 95% CI: 1.161-3.720, p=0.014; A/G+G/G, AOR=2.002, 95% CI: 1.143-3.505, p=0.015) is higher than subjects with tobacco consumption. These results suggest that the genetic polymorphism of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) were not associated with the susceptibility of oral cancer; SNP in LEP -2548 G/A showed a poor clinicopathological development of oral cancer; Population without tobacco consumption and with polymorphic LEP -2548 G/A gene may significantly increase the risk to have oral cancer.

Keywords: carcinogen, leptin, leptin receptor, oral squamous cell carcinoma, single nucleotide polymorphism

Procedia PDF Downloads 183
2404 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 189
2403 Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes in Vitro

Authors: Jie Ding, Yingying Pan, Shammy Raj, Lindy Schaffrick, Jolene Wong, Antoinette Nguyen, Sharada Manchikanti, Larry Unsworth, Peter Kwan, Edward E. Tredget

Abstract:

Background: Exosomes (EXOs) have been considered a new target that is thought to be involved in and treat wound healing. More research is needed to fully understand the EXO characteristics and mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. Methods: Total EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After confirmation of EXO uptake by dermal fibroblasts, we also explored functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs from both burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. Conclusion: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulated the fibroblasts in healing wounds, further studies will be required in the future.

Keywords: exosome, burn, wound healing, hypertrophic scarring, cytokines

Procedia PDF Downloads 77
2402 Textile Cottage Industry: A Facilitator for Capacity Building and Youth Empowerment

Authors: Salihu Maiwada

Abstract:

The large scale textile industry in Nigeria was at one time the second largest employer of labor after government. With recent developments and changing situations, there is a serious decline in this sector which consequently forced the local textile industries to close down and the workers retrenched. the category of people worst hit was the youths and the middle age. This paper examines the potentials of the textile cottage industry as a facilitator for capacity building and economic empowerment among the Nigerian youths. The paper focuses on economic viability, persistence, and above-all, its potentials for poverty reduction as well as self employment. The methodology used in the study is the survey method and the instrument used to collect the necessary information is field interview. The results obtained showed that the textile cottage industries are flourishing and the Nigerian youths are engaged in the practice. In addition, the paper suggests areas that require government's financial intervention which will facilitate the establishment and ensure the sustainability of the textile cottage industry. The paper concludes with some recommendations for the youths and for the government.

Keywords: capacity building, economic, empowerment, persistence, sustainability, youths

Procedia PDF Downloads 583
2401 Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

Authors: P. I. Bobyleva, E. R. Andreeva, I. V. Andrianova, E. V. Maslova, L. B. Buravkova

Abstract:

This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.

Keywords: hematopoietic stem and progenitor cells, mesenchymal stromal cells, tissue-related oxygen, adipose tissue

Procedia PDF Downloads 417
2400 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 405
2399 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 177
2398 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 215
2397 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel

Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner

Abstract:

Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.

Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization

Procedia PDF Downloads 526
2396 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel

Authors: M. El-haj, Z. Olama, H. Holail

Abstract:

Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.

Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi

Procedia PDF Downloads 404
2395 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 403
2394 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 147
2393 An Overview of Paclitaxel as an Anti-Cancer Agent in Avoiding Malignant Metastatic Cancer Therapy

Authors: Nasrin Hosseinzad, Ramin Ghasemi Shayan

Abstract:

Chemotherapy is the most common procedure in the treatment of advanced cancers but is justsoberlyoperativeand toxic. Nevertheless, the efficiency of chemotherapy is restrictedowing to multiple drug resistance(MDR). Lately, plentiful preclinical experiments have revealedthatPaclitaxel-Curcumin could be an ultimateapproach to converse MDR and synergistically increase their efficiency. The connotationsamongst B-cell-lymphoma2(BCL-2) and multi-drug-resistance-associated-P-glycoprotein(MDR1) consequence of patients forecast the efficiency of paclitaxel-built chemoradiotherapy. There are evidences of the efficacy of paclitaxel in the treatment of surface-transmission of bladder-cell-carcinoma by manipulating bio-adhesive microspheres accomplishedthroughout measured release of drug at urine epithelium. In Genetically-Modified method, muco-adhesive oily constructionoftricaprylin, Tween 80, and paclitaxel group showed slighter toxicity than control in therapeutic dose. Postoperative chemotherapy-Paclitaxel might be more advantageous for survival than adjuvant chemo-radio-therapy, and coulddiminish postoperative complications in cervical cancer patients underwent a radical hysterectomy.HA-Se-PTX(Hyaluronic acid, Selenium, Paclitaxel) nanoparticles could observablyconstrain the proliferation, transmission, and invasion of metastatic cells and apoptosis. Furthermore, they exhibitedvast in vivo anti-tumor effect. Additionally, HA-Se-PTX displayedminor toxicity on mice-chef-organs. Briefly, HA-Se-PTX mightprogress into a respectednano-scale agentinrespiratory cancers. To sum up, Paclitaxel is considered a profitable anti-cancer drug in the treatment and anti-progress symptoms in malignant cancers.

Keywords: cancer, paclitaxel, chemotherapy, tumor

Procedia PDF Downloads 125
2392 Effect of Replacing Maize with Acha Offal in Broiler Chicken Diets on Performance, Haematology and Serum Biochemicals

Authors: Sudik S. D., Raymon J. B., Maidala A., Lawan A., Bagudu I. A.

Abstract:

An experiment was conducted with 240 Abor Acre broilers to determine the effect of replacing maize with acha offal (Digitaria exilis) on performance, haematology, and serum biochemical. Chicks were allotted to six diets (T1, T2, T3, T4, T5, and T6) with acha offal (AO) at 0.0%, 5.0%, 7.5%, 10.0%, 12.5% and 15.0% respectively as replacement of maize with 4 replicates consisting of 10 birds per replicate in a completely randomized design. They were allowed ad libitum accessed to feed and water throughout a 42 days experiment. The results showed that at the starter phase, only feed conversion ratio (FCR) was significantly affected (p < 0.05). Chicks fed T5 had best FCR more than those fed T1 while those fed T2, T3, T4, and T6 had similar FCR comparable with T1. At the finisher stage, final weight (FW), total weight change (TWC), average daily gain (ADG), and FCR were significantly affected (p < 0.05). Chickens fed T3, T4, T5, and T6 had similar FW, TWC, and ADG and higher than those fed T1; those fed T2 had similar FW, TWG, and DWG with T1. Chickens fed T6 had best FCR, followed by those fed T3, T4, and T5, while those T2 had worse FCR similar with those fed T1. Eviscerated weight was significantly affected (p < 0.05) by treatment. Birds fed T4, T5, and T6 had higher eviscerated weight followed by T3 while those fed T2 had least eviscerated weight comparable with those fed T1. The entire organs (Gizzard, heart, kidneys, liver, lungs, pancreas, and proventriculus) were not significantly affected (p > 0.05) by treatments. Packed cell volume (PCV) and red blood cell (RBC) were significantly (p < 0.05) affected by treatment. Birds fed T4, T5, and T6 had higher and similar PCV and RBC with those fed T1 while those fed T2 and T3 had lower PCV and RBC. The entire serum metabolites were not significantly affected (p > 0.05) by treatments. In conclusion, acha offal can replace maize in starter and finisher broilers’ diets at 12.5% and 15.0%, respectively, without an adverse effect.

Keywords: broiler, acha offal, maize, performance, eviscerated, haematology, serum

Procedia PDF Downloads 148
2391 Viability of Slab Sliding System for Single Story Structure

Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase

Abstract:

Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.

Keywords: earthquake, isolation, slab, sliding

Procedia PDF Downloads 243
2390 Cytotoxic Activity of Marine-derived Fungi Trichoderma Longibrachiatum Against PANC-1 Cell Lines

Authors: Elin Julianti, Marlia Singgih, Masayoshi Arai, Jianyu Lin, Masteria Yunovilsa Putra, Muhammad Azhari, Agnia S. Muharam

Abstract:

The search for a source of new medicinal compounds with anticancer activity from natural products has become important to resolve the ineffectiveness problem of pancreatic cancer therapy. Fungal marine microorganisms are prolific sources of bioactive natural products. In this present study, the ethyl acetate extract of cultured broth of Trichoderma longibrachiatum marine sponge-derived fungi exhibited selective cytotoxicity against human pancreatic carcinoma PANC-1 cells cultured under glucose-deficient conditions (IC50 = 98,4 µg/mL). The T. longibrachiatum was fermented by the static method at room temperature for 60 days. The culture broth was extracted using ethyl acetate by liquid-liquid extraction method. The liquid-liquid extraction was conducted toward the ethyl extract by using 90% MeOH-H₂O and n-|Hexane as a solvent. The extract of 90% MeOH-H₂O was fractionated by liquid extraction using by C₁₈ reversed-phase vacuum flash chromatography using mixtures of MeOH-H₂O, from 50:50 to 100:0, and 1% TFA MeOH as the eluents to yield six fractions. The fraction 2 (MeOH-H2O, 70:30) and fraction 3 (MeOH-H2O, 80:20) showed moderate cytotoxicity with IC50 value of 119.3 and 274.7 µg/mL, respectively. Fraction 4 (MeOH-H₂O, 90:10) showed the highest cytotoxicity activity with IC₅₀value of < 10 µg/mL. The chemical compounds of the fractions that are responsible for cytotoxic activity are potent for further investigation.

Keywords: cytotoxic activity, trichoderma longibrachiatum, marine-derived fungi, PANC-1 cell line

Procedia PDF Downloads 289
2389 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet

Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer

Abstract:

Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.

Keywords: wastewater, microbes, virus, biotoilet, phage viability

Procedia PDF Downloads 431
2388 The Effect of Ethylene Glycol on Cryopreserved Bovine Oocytes

Authors: Sri Wahjuningsih, Nur Ihsan, Hadiah

Abstract:

In the embryo transfer program, to address the limited production of embryos in vivo, in vitro embryo production has become an alternative approach that is relatively inexpensive. One potential source of embryos that can be developed is to use immature oocytes then conducted in vitro maturation and in vitro fertilization. However, obstacles encountered were oocyte viability mammals have very limited that it cannot be stored for a long time, so we need oocyte cryopreservation. The research was conducted to know the optimal concentration use of ethylene glycol as a cryoprotectant on oocytes freezing.Material use in this research was immature oocytes; taken from abbatoir which was aspirated from follicle with diameter 2-6 mm. Concentration ethylen glycol used were 0,5 M, I M, 1,5 M and 2M. The freezing method used was conventional method combined with a five-step protocol washing oocytes from cryoprotectant after thawing. The result showed that concentration ethylen glycol have the significant effect (P<0.05) on oocytes quality after thawing and in vitro maturation. It was concluded that concentration 1,5 M was the best concentration for freezing oocytes using conventional method.

Keywords: bovine, conventional freezing, ethylen glycol, oocytes

Procedia PDF Downloads 358
2387 Chronic Hypertension, Aquaporin and Hydraulic Conductivity: A Perspective on Pathological Connections

Authors: Chirag Raval, Jimmy Toussaint, Tieuvi Nguyen, Hadi Fadaifard, George Wolberg, Steven Quarfordt, Kung-ming Jan, David S. Rumschitzki

Abstract:

Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis.

Keywords: acute hypertension, aquaporin-1, hydraulic conductivity, hydrostatic pressure, aortic endothelial cells, transcellular flow

Procedia PDF Downloads 228
2386 Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique

Authors: Hasan Hassoun, Jaafar Hallal, Denis Duhamel, Mohammad Hammoud, Ali Hage Diab

Abstract:

This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies.

Keywords: modal analysis, motion magnification, smartphone camera, structural vibration, vibration modes

Procedia PDF Downloads 142
2385 Geothermal Resources of Saudi Arabia: An Update

Authors: Aref Lashin

Abstract:

Saudi Arabia vision of 2030 calls for the diversification of energy sources in the Kingdom. Accordingly, Saudi Arabia has launched a promising plan aims to gradually power the major industrial activities in country by renewable and low carbon energy sources. The geothermal sources are among the promising renewable sources that can support the achievement of the country vision and energy mix plan. Saudi Arabia is enriched with several geothermal resources especially in the western and southwestern regions along the Red Sea region. This paper will give an overview on the different geothermal resources (Hydrothermal, Harrats volcanic eruptions and hot dry rocks) of Saudi Arabia, their categories and classifications as well as the different exploration (Geophysical, geological, geochemical, etc) and drilling enhanced during the last few decades. The economic viability and the possible contribution of geothermal resources in the future of renewable energy of Saudi Arabia is discussed. Some case studies from Jizan, Al-Lith, Harrats and Midyan areas are demonstrated. Scenarios of different low and high geothermal applications for possible power generations, as well as other low-grade utilizations, e.g. direct use, district heating & cooling, medical therapy, etc., are presented.

Keywords: KSA vison 2023, energy mix, geothermal resources, applications, Saudi Arabia

Procedia PDF Downloads 10
2384 Expression Profiling and Immunohistochemical Analysis of Squamous Cell Carcinoma of Head and Neck (Tumor, Transition Zone, Normal) by Whole Genome Scale Sequencing

Authors: Veronika Zivicova, Petr Broz, Zdenek Fik, Alzbeta Mifkova, Jan Plzak, Zdenek Cada, Herbert Kaltner, Jana Fialova Kucerova, Hans-Joachim Gabius, Karel Smetana Jr.

Abstract:

The possibility to determine genome-wide expression profiles of cells and tissues opens a new level of analysis in the quest to define dysregulation in malignancy and thus identify new tumor markers. Toward this long-term aim, we here address two issues on this level for head and neck cancer specimen: i) defining profiles in different regions, i.e. the tumor, the transition zone and normal control and ii) comparing complete data sets for seven individual patients. Special focus in the flanking immunohistochemical part is given to adhesion/growth-regulatory galectins that upregulate chemo- and cytokine expression in an NF-κB-dependent manner, to these regulators and to markers of differentiation, i.e. keratins. The detailed listing of up- and down-regulations, also available in printed form (1), not only served to unveil new candidates for testing as marker but also let the impact of the tumor in the transition zone become apparent. The extent of interindividual variation raises a strong cautionary note on assuming uniformity of regulatory events, to be noted when considering therapeutic implications. Thus, a combination of test targets (and a network analysis for galectins and their downstream effectors) is (are) advised prior to reaching conclusions on further perspectives.

Keywords: galectins, genome scale sequencing, squamous cell carcinoma, transition zone

Procedia PDF Downloads 234
2383 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation

Authors: Sandra Adarve, Jhon Osorio

Abstract:

Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.

Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty

Procedia PDF Downloads 161