Search results for: resonance enhancement
441 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 155440 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly
Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto
Abstract:
Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau
Procedia PDF Downloads 76439 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075
Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh
Abstract:
Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains
Procedia PDF Downloads 447438 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran
Authors: Safieh Javadinejad
Abstract:
In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling
Procedia PDF Downloads 292437 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure
Authors: Rajesh Agarwal
Abstract:
Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.Keywords: capacitance, mobility, organic, thin film transistor
Procedia PDF Downloads 165436 Unlocking Intergenerational Abortion Stories in Gardiennes By Fanny Cabon
Authors: Lou Gargouri
Abstract:
This paper examines how Fanny Cabon's solo performance, Gardiennes (2018) strategically crafts empathetic witnessing through the artist's vocal and physical embodiment of her female ancestors' testimonies, dramatizing the cyclical inheritance of reproductive trauma across generations. Drawing on affect theory and the concept of ethical co-presence, we argue that Cabon's raw voicing of illegal abortions, miscarriages, and abuse through her shape-shifting presence generates an intimate energy loop with the audience. This affective resonance catalyzes recognition of historical injustices, consecrating each singular experience while building collective solidarity. Central to Cabon's political efficacy is her transparent self-revelation through intimate impersonation, which fosters identification with diverse characters as interconnected subjects rather than objectified others. Her solo form transforms the isolation often associated with women's marginalization into radical inclusion, repositioning them from victims to empowered survivors. Comparative analysis with other contemporary works addressing abortion rights illuminates how Gardiennes subverts the traditional medical and clerical gazes that have long governed women's bodies. Ultimately, we contend Gardiennes models the potential of solo performance to harness empathy as a subversive political force. Cabon's theatrical alchemy circulates the effects of injustice through the ethical co-presence of performer and spectator, forging intersubjective connections that reframe marginalized groups traditionally objectified within dominant structures of patriarchal power. In dramatizing how the act of witnessing another's trauma can generate solidarity and galvanize resistance, Cabon's work demonstrates the role of embodied performance in catalyzing social change through the recuperation of women's voices and lived experiences. This paper thus aims to contribute to the emerging field of feminist solo performance criticism by illuminating how Cabon's innovative dramaturgy bridges the personal and the political. Her strategic mobilization of intimacy, identification, and co-presence offers a model for how the affective dynamics of autobiographical performance can be harnessed to confront gendered oppression and imagine more equitable futures. Gardiennes invites us to consider how the circulation of empathy through ethical spectatorship can foster the collective alliances necessary for advancing the unfinished project of women's liberation.Keywords: gender and sexuality studies, solo performance, trauma studies, affect theory
Procedia PDF Downloads 66435 E-Learning Approach for Improving Classroom Teaching to Enhance Students' Learning in Secondary Schools in Nigeria
Authors: Chika Ethel Esege
Abstract:
Electronic learning is learning facilitated by technology which has basically altered approaches globally, including the field of education. This trend is compelling educators to focus on approaches that improve classroom practices in order to enhance students’ learning and participation in a global digital society. However, e-learning is not fully utilized across subject disciplines particularly in the field of humanities, in the context of Nigerian secondary education. This study focused on the use of e-learning to enhance the development of digital skills, particularly, collaboration and communication in secondary school students in Nigeria. The study adopted an ‘action research’ involving 210 students and 7 teachers, who utilised the e-learning platform designed by the researcher for the survey. Mixed methods- qualitative and quantitative- were used for data collection including questionnaire, observation, interview, and analysis of statutory documents. The data were presented using frequency counts for questionnaire responses and figures of screenshots for learning tasks. The VOD Burner software was also used to analyse interviews and video recordings. The study showed that the students acquired collaboration and communication skills through e-learning intervention lesson, and demonstrated satisfaction with this approach. However, the study further revealed that the traditional teaching approach could not provide digital education or develop the digital skills of the students. Based on these findings, recommendations were made that the Nigerian Government should incorporate digital content across subject disciplines into secondary school education curricular and provide adequate infrastructure in order to enable educators to adopt relevant approaches necessary for the enhancement of students’ learning especially in a technologically evolving and advancing world.Keywords: developing collaboration and communication skills, electronic learning, improving classroom teaching, secondary schools in Nigeria
Procedia PDF Downloads 134434 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method
Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty
Procedia PDF Downloads 16433 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts
Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert
Abstract:
Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs
Procedia PDF Downloads 330432 Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)
Authors: N. N. Lingaraju, A. Sathish, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar
Abstract:
Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹).Keywords: distillery spentwash, finger millet, maize, waste water
Procedia PDF Downloads 359431 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality
Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard
Abstract:
Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus
Procedia PDF Downloads 573430 Sacred Echoes: The Shamanic Journey of Hushahu and the Empowerment of Indigenous Women
Authors: Nadia K. Thalji
Abstract:
The shamanic odyssey of Hushahu, a courageous indigenous woman from the Amazon, reverberates with profound significance, resonating far beyond the confines of her tribal boundaries. This abstract explores Hushahu's transformative journey, which serves as a beacon of empowerment for indigenous women across the Amazon region. Hushahu's narrative unfolds against the backdrop of entrenched gender norms and colonial legacies that have historically marginalized women from spiritual leadership and ritual practices. Despite societal expectations and entrenched traditions, Hushahu boldly embraces her calling as a shaman, defying cultural constraints and challenging prevailing gender norms. Her journey represents a symbolic uprising against centuries of patriarchal dominance, offering a glimpse into the resilience and strength of indigenous women. Drawing upon Jungian psychology, Hushahu's quest can be understood as a profound exploration of the symbolic dimensions of the psyche. Through Hushahu’s initiation rituals and visionary experiences, the initiate embarks on a transformative journey of self-discovery, encountering archetypal symbols and tapping into the collective unconscious. Symbolism permeates the path, guiding Hushahu through the depths of the rainforest and illuminating the hidden realms of consciousness. Central to Hushahu's narrative is the theme of empowerment—a theme that transcends individual experience to catalyze broader social change. As Hushahu finds a voice amidst the echoes of ancestral wisdom, the journey inspires a ripple effect of empowerment throughout indigenous communities. Other women within Hushahu's tribe and neighboring societies are emboldened to challenge traditional gender roles, stepping into leadership positions and reclaiming their rightful place in spiritual practices. The resonance of Hushahu's journey extends beyond the Amazon, reverberating across cultural boundaries and igniting conversations about gender equality and indigenous rights. Through courageous defiance of cultural norms, Hushahu emerges as a symbol of resilience and empowerment, offering hope and inspiration to marginalized women around the world. In conclusion, Hushahu's shamanic journey embodies the sacred echoes of empowerment, echoing across generations and landscapes. The story serves as a testament to the enduring power of the human spirit and the transformative potential of reclaiming one's voice in the face of adversity. As indigenous women continue to rise, Hushahu's legacy stands as a beacon of hope, illuminating the path towards a more equitable and inclusive world.Keywords: shamanic leadership, indigenous empowerment, gender norms, cultural transformation
Procedia PDF Downloads 48429 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper
Authors: M. Parvez Alam, M. Bilal Khan
Abstract:
Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag
Procedia PDF Downloads 316428 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems
Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm
Abstract:
Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa
Procedia PDF Downloads 331427 Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications
Authors: Ganesh R. Bhand, N. B. Chaure
Abstract:
Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of 4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency.Keywords: CdSe QDs, cupper phthalocyanine, FTIR, optical absorption
Procedia PDF Downloads 200426 Effects of the Natural Compound on SARS-CoV-2 Spike Protein-Mediated Metabolic Alteration in THP-1 Cells Explored by the ¹H-NMR-Based Metabolomics Approach
Authors: Gyaltsen Dakpa, K. J. Senthil Kumar, Nai-Wen Tsao, Sheng-Yang Wang
Abstract:
Context: Coronavirus disease 2019 (COVID-19) is a severe respiratory illness caused by the SARS-CoV-2 virus. One of the hallmarks of COVID-19 is a change in metabolism, which can lead to increased severity and mortality. The mechanism of SARS-CoV-2-mediated perturbations of metabolic pathways has yet to be fully understood. Research Aim: This study aimed to investigate the metabolic alteration caused by SARS-CoV-2 spike protein in Phorbol 12-myristate 13-acetate (PMA)-induced human monocytes (THP-1) and to examine the regulatory effect of natural compounds like Antcins A on SARS-CoV-2 spike protein-induced metabolic alteration. Methodology: The study used a combination of proton nuclear magnetic resonance (1H-NMR) and MetaboAnalyst 5.0 software. THP-1 cells were treated with SARS-CoV-2 spike protein or control, and the metabolomic profiles of the cells were compared. Antcin A was also added to the cells to assess its regulatory effect on SARS-CoV-2 spike protein-induced metabolic alteration. Findings: The study results showed that treatment with SARS-CoV-2 spike protein significantly altered the metabolomic profiles of THP-1 cells. Eight metabolites, including glycerol-phosphocholine, glycine, canadine, sarcosine, phosphoenolpyruvic acid, glutamine, glutamate, and N, N-dimethylglycine, were significantly different between control and spike-protein treatment groups. Antcin A significantly reversed the changes in these metabolites. In addition, treatment with antacid A significantly inhibited SARS-CoV-2 spike protein-mediated up-regulation of TLR-4 and ACE2 receptors. Theoretical Importance The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19. Data Collection: The data for this study was collected from THP-1 cells that were treated with SARS-CoV-2 spike protein or a control. The metabolomic profiles of the cells were then compared using 1H-NMR and MetaboAnalyst 5.0 software. Analysis Procedures: The metabolomic profiles of the THP-1 cells were analyzed using 1H-NMR and MetaboAnalyst 5.0 software. The software was used to identify and quantify the cells' metabolites and compare the control and spike-protein treatment groups. Questions Addressed: The question addressed by this study was whether SARS-CoV-2 spike protein could cause metabolic alterations in THP-1 cells and whether Antcin A can reverse these alterations. Conclusion: The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19.Keywords: SARS-CoV-2-spike, ¹H-NMR, metabolomics, antcin-A, taiwanofungus camphoratus
Procedia PDF Downloads 71425 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila
Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores
Abstract:
This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires
Procedia PDF Downloads 5424 Implementation Status of Industrial Training for Production Engineering Technology Diploma Inuniversity Kuala Lumpur Malaysia Spanish Institute (Unikl Msi)
Authors: M. Sazali Said, Rahim Jamian, Shahrizan Yusoff, Shahruzaman Sulaiman, Jum'Azulhisham Abdul Shukor
Abstract:
This case study focuses on the role of Universiti Kuala Lumpur Malaysian Spanish Institute (UniKL MSI) to produce technologist in order to reduce the shortage of skilled workers especially in the automotive industry. The purpose of the study therefore seeks to examine the effectiveness of Technical Education and Vocational Training (TEVT) curriculum of UniKL MSI to produce graduates that could immediately be productively employed by the automotive industry. The approach used in this study is through performance evaluation of students attending the Industrial Training Attachment (INTRA). The sample of study comprises of 37 students, 16 university supervisors and 26 industrial supervisors. The research methodology involves the use of quantitative and qualitative methods of data collections through the triangulation approach. The quantitative data was gathered from the students, university supervisors and industrial supervisors through the use of questionnaire. Meanwhile, the qualitative data was obtained from the students and university supervisors through the use of interview and observation. Both types of data have been processed and analyzed in order to summarize the results in terms of frequency and percentage by using a computerized spread sheet. The result shows that industrial supervisors were satisfied with the students’ performance. Meanwhile, university supervisors rated moderate effectiveness of the UniKL MSI curriculum in producing graduates with appropriate skills and in meeting the industrial needs. During the period of study, several weaknesses in the curriculum have been identified for further continuous improvements. Recommendations and suggestions for curriculum improvement also include the enhancement of technical skills and competences of students towards fulfilling the needs and demand of the automotive industries.Keywords: technical education and vocational training (TEVT), industrial training attachment (INTRA), curriculum improvement, automotive industry
Procedia PDF Downloads 368423 Cultural Influence on Personal Worth: A Qualitative Approach to Understand Honor and Dignity as Differential Dimensions of Self-Worth
Authors: Tanya Keni
Abstract:
Efforts to link culture and self, have been the focus, initially of Anthropology and later of Psychology in the first half of the 20th century. In doing so, cross-cultural researchers have endeavored to identify factors valuable for classifying cultures. One such central classification is that of individualism and collectivism which remains prominent. However, it overlooks certain other cultural dimensions that can be of interest and need attention. The current paper tries to move beyond this classic distinction, to cultures that are termed to be honor and dignity oriented. Both honor and dignity, refer to the worth of a person but bear different connotations and psychological consequences. While dignity is an independent concept of self-worth whose locus lies deep within the individual, honor is an interdependent concept that needs both personal as well as societal acknowledgment. This research takes an exploratory and qualitative approach to draw the individual, structural and contextual understanding of personal honor and dignity in broad cultures that are conceptualized as honor and dignity aimed. The aim is to understand the cultural influence on an individual’s self-worth, considering gender. 12 Focus group discussions were conducted across North India and Germany with four participants each. The research process was inspired by the approaches of social constructivism and critical realism. These discussions were transcribed and further analyzed using thematic analysis and the results have revealed differential themes for the concepts of honor and dignity. Certain dimensional similarities were also observed for both the cultural groups, however with differential usage of language. In particular, the North Indian group was seen using phrases that were oriented towards safeguarding against loss of honor or dignity. While the phrases of the German group were aligned towards worth-enhancement. The research also gives an illustration of how honor and dignity translate into behavioral practice that can exert an influence on important life decisions, especially about self and family for both males and females. In addition to these, the study also contributes to the literature on self-worth by developing the concept of ‘dignity’ for which there exists a dearth of research.Keywords: culture, dignity, honor, self, self-worth
Procedia PDF Downloads 86422 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao
Abstract:
In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs
Procedia PDF Downloads 236421 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads
Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon
Abstract:
The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads
Procedia PDF Downloads 270420 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres
Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar
Abstract:
This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability
Procedia PDF Downloads 95419 Review of Student-Staff Agreements in Higher Education: Creating a Framework
Authors: Luke Power, Paul O'Leary
Abstract:
Research has long described the enhancement of student engagement as a fundamental aim of delivering a consistent, lifelong benefit to student success across the multitude of dimensions a quality HE (higher education) experience offers. Engagement may take many forms, with Universities and Institutes across the world attempting to define the parameters which constitutes a successful student engagement framework and implementation strategy. These efforts broadly include empowering students, encouraging involvement, and the transfer of decision-making power through a variety of methods with the goal of obtaining a meaningful partnership between students and staff. As the Republic of Ireland continues to observe an increasing population transferring directly from secondary education to HE institutions, it falls on these institutions to research and develop effective strategies which insures the growing student population have every opportunity to engage with their education, research community, and staff. This research systematically reviews SPAs (student partnership agreements) which are currently in the process of being defined, and/or have been adopted at HE institutions, worldwide. Despite the demonstrated importance of a student-staff partnership to the overall student engagement experience, there is no obvious framework or model by which to begin this process. This work will therefore provide a novel analysis of student-staff agreements which will focus on examining the factors of success common to each and builds towards a workable and applicable framework using critical review, analysis of the key words, phraseology, student involvement, and the broadly applicable HE traits and values. Following the analysis, this work proposes SPA ‘toolkit’ with input from key stakeholders such as students, staff, faculty, and alumni. The resulting implications for future research and the lessons learned from the development and implementation of the SPA will aid the systematic implementation of student-staff agreements in Ireland and beyond.Keywords: student engagement, student partnership agreements, student-staff partnerships, higher education, systematic review, democratising students, empowering students, student unions
Procedia PDF Downloads 181418 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia
Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar
Abstract:
Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition
Procedia PDF Downloads 220417 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete
Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam
Abstract:
Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry
Procedia PDF Downloads 327416 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study
Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota
Abstract:
Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling
Procedia PDF Downloads 155415 Specific Earthquake Ground Motion Levels That Would Affect Medium-To-High Rise Buildings
Authors: Rhommel Grutas, Ishmael Narag, Harley Lacbawan
Abstract:
Construction of high-rise buildings is a means to address the increasing population in Metro Manila, Philippines. The existence of the Valley Fault System within the metropolis and other nearby active faults poses threats to a densely populated city. The distant, shallow and large magnitude earthquakes have the potential to generate slow and long-period vibrations that would affect medium-to-high rise buildings. Heavy damage and building collapse are consequences of prolonged shaking of the structure. If the ground and the building have almost the same period, there would be a resonance effect which would cause the prolonged shaking of the building. Microzoning the long-period ground response would aid in the seismic design of medium to high-rise structures. The shear-wave velocity structure of the subsurface is an important parameter in order to evaluate ground response. Borehole drilling is one of the conventional methods of determining shear-wave velocity structure however, it is an expensive approach. As an alternative geophysical exploration, microtremor array measurements can be used to infer the structure of the subsurface. Microtremor array measurement system was used to survey fifty sites around Metro Manila including some municipalities of Rizal and Cavite. Measurements were carried out during the day under good weather conditions. The team was composed of six persons for the deployment and simultaneous recording of the microtremor array sensors. The instruments were laid down on the ground away from sewage systems and leveled using the adjustment legs and bubble level. A total of four sensors were deployed for each site, three at the vertices of an equilateral triangle with one sensor at the centre. The circular arrays were set up with a maximum side length of approximately four kilometers and the shortest side length for the smallest array is approximately at 700 meters. Each recording lasted twenty to sixty minutes. From the recorded data, f-k analysis was applied to obtain phase velocity curves. Inversion technique is applied to construct the shear-wave velocity structure. This project provided a microzonation map of the metropolis and a profile showing the long-period response of the deep sedimentary basin underlying Metro Manila which would be suitable for local administrators in their land use planning and earthquake resistant design of medium to high-rise buildings.Keywords: earthquake, ground motion, microtremor, seismic microzonation
Procedia PDF Downloads 468414 Optimal Design of Wind Turbine Blades Equipped with Flaps
Authors: I. Kade Wiratama
Abstract:
As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero
Procedia PDF Downloads 337413 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes
Authors: Sofia Lazareva, Artem Smolentsev
Abstract:
Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state
Procedia PDF Downloads 679412 Feasibility Study on Developing and Enhancing of Flood Forecasting and Warning Systems in Thailand
Authors: Sitarrine Thongpussawal, Dasarath Jayasuriya, Thanaroj Woraratprasert, Sakawtree Prajamwong
Abstract:
Thailand grapples with recurrent floods causing substantial repercussions on its economy, society, and environment. In 2021, the economic toll of these floods amounted to an estimated 53,282 million baht, primarily impacting the agricultural sector. The existing flood monitoring system in Thailand suffers from inaccuracies and insufficient information, resulting in delayed warnings and ineffective communication to the public. The Office of the National Water Resources (OWNR) is tasked with developing and integrating data and information systems for efficient water resources management, yet faces challenges in monitoring accuracy, forecasting, and timely warnings. This study endeavors to evaluate the viability of enhancing Thailand's Flood Forecasting and Warning (FFW) systems. Additionally, it aims to formulate a comprehensive work package grounded in international best practices to enhance the country's FFW systems. Employing qualitative research methodologies, the study conducted in-depth interviews and focus groups with pertinent agencies. Data analysis involved techniques like note-taking and document analysis. The study substantiates the feasibility of developing and enhancing FFW systems in Thailand. Implementation of international best practices can augment the precision of flood forecasting and warning systems, empowering local agencies and residents in high-risk areas to prepare proactively, thereby minimizing the adverse impact of floods on lives and property. This research underscores that Thailand can feasibly advance its FFW systems by adopting international best practices, enhancing accuracy, and improving preparedness. Consequently, the study enriches the theoretical understanding of flood forecasting and warning systems and furnishes valuable recommendations for their enhancement in Thailand.Keywords: flooding, forecasting, warning, monitoring, communication, Thailand
Procedia PDF Downloads 61