Search results for: concrete damage plasticity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4271

Search results for: concrete damage plasticity

2651 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 408
2650 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 210
2649 Towards the Management of Cybersecurity Threats in Organisations

Authors: O. A. Ajigini, E. N. Mwim

Abstract:

Cybersecurity is the protection of computers, programs, networks, and data from attack, damage, unauthorised, unintended access, change, or destruction. Organisations collect, process and store their confidential and sensitive information on computers and transmit this data across networks to other computers. Moreover, the advent of internet technologies has led to various cyberattacks resulting in dangerous consequences for organisations. Therefore, with the increase in the volume and sophistication of cyberattacks, there is a need to develop models and make recommendations for the management of cybersecurity threats in organisations. This paper reports on various threats that cause malicious damage to organisations in cyberspace and provides measures on how these threats can be eliminated or reduced. The paper explores various aspects of protection measures against cybersecurity threats such as handling of sensitive data, network security, protection of information assets and cybersecurity awareness. The paper posits a model and recommendations on how to manage cybersecurity threats in organisations effectively. The model and the recommendations can then be utilised by organisations to manage the threats affecting their cyberspace. The paper provides valuable information to assist organisations in managing their cybersecurity threats and hence protect their computers, programs, networks and data in cyberspace. The paper aims to assist organisations to protect their information assets and data from cyberthreats as part of the contributions toward community engagement.

Keywords: confidential information, cyberattacks, cybersecurity, cyberspace, sensitive information

Procedia PDF Downloads 245
2648 Silica Nanoparticles Induced Oxidative Stress and Inflammation in MRC-5 Human Lung Fibroblasts

Authors: Anca Dinischiotu, Sorina Nicoleta Voicu

Abstract:

Silica nanoparticles (SiO2-NPs) are widely used in consumer products such as paints, plastics, insulation materials, tires, concrete production, as well as in gene delivery systems and imaging procedures. Environmental human exposure to them occurs during utilization of these products, in a time-dependent manner, the uptake being by topic and inhalation route especially. SiO2-NPs enter cells and induce membrane damage, oxidative stress and inflammatory reactions in a concentration-dependent manner. In this study, MRC-5 cells (human fetal lung fibroblasts) were exposed to amorphous SiO2-NPs at a dose of 62.5 μg/ml for 24, 48 and 72 hours. The size distribution of NPs was a lognormal function, in the range 3-14 nm. A time-dependent decrease of total reduced glutathione concentration by 36%, 50%, and 78% and an increase of NO level by 62%, 32%, respectively 24% compared to control were noticed. An up-regulation of NF-kB expression by 20%, 50% respectively 10% and of Nrf-2 by 139%, 58%, and 16% compared to control after 24, 48 and 72 hours was noticed also. The expression of IL-1β, IL-6, IL-8, and COX-2 was up-regulated in a time-dependent manner. Also, the expression of MMP-2 and MMP-9 were down-regulated after 48 and 72 hours, whereas their activities raised in a time-dependent manner. Exposure of cells to NPs up-regulated the expression of inducible NO synthase, as previously was shown, and probably this is the reason for the increased level of NO, that can react with the thiol groups of reduced glutathione molecules, diminishing its concentration Nrf2 is a transcription factor translocated in nucleus, under oxidative stress, where downstream gene expression activates in order to modulate the adaptive intracellular response against oxidative stress. The cross-talk between Nrf2 and NF-kB activities regulates the inflammatory processes. The activation of NF-kB could activate up-regulation of IL-1β, IL-6, and IL-8. The increase of COX-2 expression could be correlated with IL-1β one. Also, probably in response to the pro-inflammatory cytokines, MMP-2 and MMP-9 were induced and activated. In conclusion, the exposure of MRC-5 cells to SiO2-NPs generated inflammation in a time-dependent manner.

Keywords: inflammation, MRC-5 cells, oxidative stress, silica nanoparticles

Procedia PDF Downloads 135
2647 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 277
2646 Hydrogeomatic System for the Economic Evaluation of Damage by Flooding in Mexico

Authors: Alondra Balbuena Medina, Carlos Diaz Delgado, Aleida Yadira Vilchis Fránces

Abstract:

In Mexico, each year news is disseminated about the ravages of floods, such as the total loss of housing, damage to the fields; the increase of the costs of the food, derived from the losses of the harvests, coupled with health problems such as skin infection, etc. In addition to social problems such as delinquency, damage in education institutions and the population in general. The flooding is a consequence of heavy rains, tropical storms and or hurricanes that generate excess water in drainage systems that exceed its capacity. In urban areas, heavy rains can be one of the main factors in causing flooding, in addition to excessive precipitation, dam breakage, and human activities, for example, excessive garbage in the strainers. In agricultural areas, these can hardly achieve large areas of cultivation. It should be mentioned that for both areas, one of the significant impacts of floods is that they can permanently affect the livelihoods of many families, cause damage, for example in their workplaces such as farmlands, commercial or industry areas and where services are provided. In recent years, Information and Communication Technologies (ICT) have had an accelerated development, being reflected in the growth and the exponential evolution of the innovation giving; as a result, the daily generation of new technologies, updates, and applications. Innovation in the development of Information Technology applications has impacted on all areas of human activity. They influence all the orders of life of individuals, reconfiguring the way of perceiving and analyzing the world such as, for instance, interrelating with people as individuals and as a society, in the economic, political, social, cultural, educational, environmental, etc. Therefore the present work describes the creation of a system of calculation of flood costs for housing areas, retail establishments and agricultural areas from the Mexican Republic, based on the use and application of geotechnical tools being able to be useful for the benefit of the sectors of public, education and private. To generate analysis of hydrometereologic affections and with the obtained results to realize the Geoinformatics tool was constructed from two different points of view: the geoinformatic (design and development of GIS software) and the methodology of flood damage validation in order to integrate a tool that provides the user the monetary estimate of the effects caused by the floods. With information from the period 2000-2014, the functionality of the application was corroborated. For the years 2000 to 2009 only the analysis of the agricultural and housing areas was carried out, incorporating for the commercial establishment's information of the period 2010 - 2014. The method proposed for the resolution of this research project is a fundamental contribution to society, in addition to the tool itself. Therefore, it can be summarized that the problems that are in the physical-geographical environment, conceiving them from the point of view of the spatial analysis, allow to offer different alternatives of solution and also to open up slopes towards academia and research.

Keywords: floods, technological innovation, monetary estimation, spatial analysis

Procedia PDF Downloads 214
2645 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 462
2644 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements

Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel

Abstract:

Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.

Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance

Procedia PDF Downloads 285
2643 Effect of the Alloying Elements on Mechanical Properties of TWIP Steel

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others.

Keywords: high manganese, heat treatment, SEM, XRD, cold-rolling

Procedia PDF Downloads 495
2642 The Effects of Maternal Exposure Riboflavin to Prevent Uterus Arsenic Damage in Offspring Rats

Authors: Ali Olfati, Parichehr Nouri

Abstract:

Objective: In this study, we have investigated for the first time in the literature the efficacy of riboflavin [VB2] in preventing uterus As₂O₃ damage. Methods: Rats received 40 μg LHRHa for estrus synchronization. 48 pregnant Wistar rats were included. Four groups were formed with 7 rats in each group: Sham, 1.5 mg arsenic trioxide (As₂O₃/L) alone or in combination with VB2 [20 and 40 mg/L] in drinking water [for 21 days continuously]. Similar to maternal generation treatment, the F1-female generation was also arranged [for 35 days continuously until puberty]. Results: Data indicated that As₂O₃ reduced body weight and feed intake (p<0.05). Furthermore, the serum malondialdehyde levels in the As₂O₃ group were significantly higher than that of the control group (p<0.05). At the same time, total antioxidative status and the activities of glutathione peroxidase, superoxide dismutase, and catalase were reduced (p<0.05). Meanwhile, As₂O₃ remarkably increased the production of inflammatory markers [interleukin 6 and C-reactive protein](p<0.05). As₂O₃ administration induced uterus apoptosis-related genes by upregulating caspase-3, iNOS, and Bax genes and downregulating Bcl-2 gene of pubertal F1-female rats (p<0.05). Conclusion: Our observation indicated that VB2 therapy is potentially an effective strategy to modifying the detrimental effects of As₂O₃ in pubertal F1-female rats via suppresses oxidative damages.

Keywords: As₂O₃, inflammation, puberty, vitamin B2

Procedia PDF Downloads 136
2641 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field

Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin

Abstract:

The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.

Keywords: rice field rat, Rattus argentiventer, fence, rice

Procedia PDF Downloads 27
2640 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application

Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job

Abstract:

In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.

Keywords: cell line, chrome, genotoxicity, leather, natural rubber

Procedia PDF Downloads 188
2639 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 132
2638 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 409
2637 Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.

Keywords: Damage scenarios, masonry buildings, old city center, seismic vulnerability, vulnerability index

Procedia PDF Downloads 438
2636 The Role of Neuroserpin in Rheumatoid Arthritis Patients

Authors: Sevil Arabaci Tamer, Gonul Gurol, Ibrahim Tekeoglu, Halil Harman, Ihsan Hakki Ciftci

Abstract:

Neuroserpin (NSP) is a serine protease inhibitor and member of the serpin family. It is expressed in developing and adult nervous systems, and acts as an inhibitor of protease tissue plasminogen activator (tPA) and a regulator of neuronal growth and plasticity. Also NSP displays anti-inflammatory activity. But, its role in rheumatoid arthritis had never been studied before. So, the aim of the present study was to investigate the effect of neuroserpin in patients with RA. A total of 50 frozen (-20 ºC) serum samples 40 of them belonged to patients with RA, and 10 sample belonged to healthy subjects, were enrolled prospectively. We used DAS-28 to evaluate disease activity. The following clinical data gathered from the original patients' charts. Serum neuroserpin levels were measured by enzyme-linked immunosorbent assay. Our preliminary study results demonstrate, for the first time, that NSP levels are significantly different in RA patients relative to healthy subjects (P = 0.014). So, NSP contribute to pathological condition of RA. Thus, we believe that serum NSP levels can be as a marker in patients with RA. However other inflammatory diseases should be further investigated.

Keywords: neuroserpin, rheumatoid arthritis, tPA, tPA inhibitor

Procedia PDF Downloads 460
2635 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: ballistic velocity, stainless steel, numerical approaches, security screen

Procedia PDF Downloads 145
2634 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 127
2633 Enhancing the Engineering Properties of Clay by Using Mechanically Treated Rice Straw Fibers

Authors: Saeedullah J. Mandokhail, Meer H. Khan, Muhibullah Kakar

Abstract:

The studies on the mechanical behavior of randomly distributed short fiber soil composite are relatively new technique in geotechnical engineering. In this paper, mechanically treated rice straw (MTRS) fiber is used to improve the engineering properties of clay. Clay was mixed with 0 %, 0.5 %, 1 % and 2 % of MTRS fiber to analyze the effect of MTRS fiber on properties of soil. It was found that the plasticity index of soil decreases with increase in the MTRS fiber. Cohesion and angle of internal friction of soil were also found to increase with limiting increase in the amount of MTRS fiber and then decreases. The maximum dry density slightly decreases and the optimum moisture content slightly increases with increasing amount of MTRS fibers.

Keywords: cohesion, friction angle, optimum moisture content, rice straw fiber, short fiber

Procedia PDF Downloads 213
2632 A Review of Antimicrobial Strategy for Cotton Textile

Authors: C. W. Kan, Y. L. Lam

Abstract:

Cotton textile has large specific surfaces with good adhesion and water-storage properties which provide conditions for the growth and settlement of biological organisms. In addition, the soil, dust and solutes from sweat can also be the sources of nutrients for microorganisms [236]. Generally speaking, algae can grow on textiles under very moist conditions, providing nutrients for fungi and bacteria growth. Fungi cause multiple problems to textiles including discolouration, coloured stains and fibre damage. Bacteria can damage fibre and cause unpleasant odours with a slick and slimy feel. In addition, microbes can disrupt the manufacturing processes such as textile dyeing, printing and finishing operations through the reduction of viscosity, fermentation and mold formation. Therefore, a large demand exists for the anti-microbially finished textiles capable of avoiding or limiting microbial fibre degradation or bio fouling, bacterial incidence, odour generation and spreading or transfer of pathogens. In this review, the main strategy for cotton textile will be reviewed. In the beginning, the classification of bacteria and germs which are commonly found with cotton textiles will be introduced. The chemistry of antimicrobial finishing will be discussed. In addition, the types of antimicrobial treatment will be summarized. Finally, the application and evaluation of antimicrobial treatment on cotton textile will be discussed.

Keywords: antimicrobial, cotton, textile, review

Procedia PDF Downloads 353
2631 Effect of Low Plastic Clay Quantity on Behavioral Characteristics of Loose Sand

Authors: Roza Rahbari

Abstract:

After the Nigatta earthquake in Japan, in 1960, the liquefaction and its related hazards, moved to the thick of matter. Most of the research have been carried out on clean sands and silty sands so far, in order to study the effect of fine particles, confinement pressures, density and so on. However, because of this delusion that adhesiveness of clay prevents the liquefaction in sand, studies on clayey sands have not been taken seriously. However, several liquefactions happened in clayey sands in recent years, and lead to the necessity of more studies in this field. The studies which were carried out so far focused on high plastic clays. In this paper, the effect of low plasticity clays on the behavioral characteristics of sands is discussed. Thus, some triaxial tests were carried out on clean sands and clayey sands with different percentages of added clay. Specimens were compacted in various densities to study the effect of quantity of clay on various densities, too. Based on the findings, the amount of clay affects the behavior of sand greatly and leads to substantial changes in peak bearing capacity and steady state values.

Keywords: liquefaction, clay, sand, triaxial, monotonic, failure

Procedia PDF Downloads 234
2630 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite

Procedia PDF Downloads 236
2629 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 235
2628 Neurotoxic Effects Assessment of Metformin in Danio rerio

Authors: Gustavo Axel Elizalde-Velázquez

Abstract:

Metformin is the first line of oral therapy to treat type II diabetes and is also employed as a treatment for other indications, such as polycystic ovary syndrome, cancer, and COVID-19. Recent data suggest it is the aspirin of the 21st century due to its antioxidant and anti-aging effects. However, increasingly current articles indicate its long-term consumption generates mitochondrial impairment. Up to date, it is known metformin increases the biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription, but further information related to brain damage after its consumption is missing. Bearing in mind the above, this work aimed to establish whether or not chronic exposure to metformin may alter swimming behavior and induce neurotoxicity in Danio rerio adults. For this purpose, 250 Danio rerio grown-ups were assigned to six tanks of 50 L of capacity. Four of the six systems contained 50 fish, while the remaining two had 25 fish (≈1 male:1 female ratio). Every system with 50 fish was allocated one of the three metformin treatment concentrations (1, 20, and 40 μg/L), with one system as the control treatment. Systems with 25 fish, on the other hand, were used as positive controls for acetylcholinesterase (10 μg/L of Atrazine) and oxidative stress (3 μg/L of Atrazine). After four months of exposure, a mean of 32 fish (S.D. ± 2) per group of MET treatment survived, which were used for the evaluation of behavior with the Novel Tank test. Moreover, after the behavioral assessment, we aimed to collect the blood and brains of all fish from all treatment groups. For blood collection, fish were anesthetized with an MS-222 solution (150 mg/L), while for brain gathering, fish were euthanized using the hypothermic shock method (2–4 °C). Blood was employed to determine CASP3 activity and the percentage of apoptotic cells with the TUNEL assay, and brains were used to evaluate acetylcholinesterase activity, oxidative damage, and gene expression. After chronic exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. To the best of our understanding, this is the first study that delivers evidence of oxidative impairment, apoptosis, AChE alteration, and overexpression of B- amyloid-related genes in the brain of fish exposed to metformin.

Keywords: AChE inhibition, CASP3 activity, NovelTank test, oxidative damage, TUNEL assay

Procedia PDF Downloads 77
2627 Life Cycle Analysis of Using Brick Waste in Road Technology

Authors: Mezhoud Samy, Toumi Youcef, Boukendekdji Otmane

Abstract:

Nowadays, industrial by-products and waste are increasing along with public needs increase. The engineering sector has turned to sustainable development by emphasizing the aspects of environmental and life cycle assessment as an important objective. Among this waste, the remains of the red bricks (DBR) may be an alternative worth checking out, given their availability and abundance at the construction sites. In this context, this work aims to valorize DBR in the concrete road (BR). The incorporation of DBR is carried out by the substitution of the granular fractions of mixtures from noble quarry materials. The experimental plan aims to determine the physico-mechanical performance and environmental performance of manufactured BRs from DBR with a cement content (6.5%) and compared with a control BR without DBR. The studied characteristics are proctor, resistance to compression, resistance to flexural tensile at 7 and 28 days, modulus of elasticity, and total shrinkage. The results of this experimental study showed that the characteristics of recycled aggregates (DBR) are lower than those of natural aggregates but remain acceptable with respect to regulations. Results demonstrate the mechanical performance of BR made from less DBR than the control BR without DBR but remains appreciable and encourage their jobs in the road sector. Recycled aggregates can constitute an interesting economic and ecological alternative but require elementary precautions before any use.

Keywords: life cycle assessment, brick waste, road concrete, performance

Procedia PDF Downloads 85
2626 Usage of Palm Oil Industrial Wastes as Construction Materials

Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar

Abstract:

Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.

Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates

Procedia PDF Downloads 337
2625 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 49
2624 Carvacrol Attenuates Lung Injury in Rats with Severe Acute Pancreatitis

Authors: Salim Cerig, Fatime Geyikoglu, Pınar Akpulat, Suat Colak, Hasan Turkez, Murat Bakir, Mirkhalil Hosseinigouzdagani, Kubra Koc

Abstract:

This study was designed to evaluate whether carvacrol (CAR) could provide protection against lung injury by acute pancreatitis development. The rats were randomized into groups to receive (I) no therapy; (II) 50 μg/kg cerulein at 1h intervals by four intraperitoneal injections (i.p.); (III) 50, 100 and 200 mg/kg CAR by one i.p.; and (IV) cerulein+CAR after 2h of cerulein injection. 12h later, serum samples were obtained to assess pancreatic function the lipase and amylase values. The animals were euthanized and lung samples were excised. The specimens were stained with hematoxylin-eosin (H&E), periodic acid–Schif (PAS), Mallory's trichrome and amyloid. Additionally, oxidative DNA damage was determined by measuring as increases in 8-hydroxy-deoxyguanosine (8-OH-dG) adducts. The results showed that the serum activity of lipase and amylase in AP rats were significantly reduced after the therapy (p<0.05). We also found that the 100 mg/kg dose of CAR significantly decreased 8-OH-dG levels. Moreover, the severe pathological findings in the lung such as necrosis, inflammation, congestion, fibrosis, and thickened alveolar septum were attenuated in the AP+CAR groups when compared with AP group. Finally, the magnitude of the protective effect on lung is certain, and CAR is an effective therapy for lung injury caused by AP.

Keywords: antioxidant activity, acute pancreatitis, carvacrol, experimental, lung injury, oxidative DNA damage

Procedia PDF Downloads 358
2623 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate

Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco

Abstract:

The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.

Keywords: environmental impact, geotechnics, PET, silty clay soil

Procedia PDF Downloads 226
2622 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 217