Search results for: composites membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2014

Search results for: composites membrane

394 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 318
393 Anti-inflammatory and Hemostatic Activities of Methanolic Extract from Atriplex Halimus. Leaves

Authors: Yahia Massinissa, Benhouda Afaf, Benbia Souhila, Meddour Noura, Takellalet Karima, Zeroual Amina

Abstract:

Introduction: chenopodiaceae family species are known for their important biological activity, in which Atriplex halimus belongs . However, the inflammatory effect of this plant leaves has not been studied. This work aimed at assessing the anti- inflammatory and hemostatic activities of the methanolic extract AHMeOH of Atriplex halimus’s leaves. Methods: The extract was obtained using sonication of leaves powder in 80 % methanol. The analysis of phenolic compounds was carried out using thin-layer chromatography (TLC).The anti-inflammatory activity was determined by studying the plasmical membrane stabilization and albumin denaturation inhibition, the hemostatic activity was evaluated by measuring the plasma in the blood. Results: Quantitative determination of total flavonoids reveals that AHMeOH is rich in flavonoids (16 ± 0.88 μg Q / mg extract) and polyphenols (20 ± 0.20 μg AG / mg extract). about anti-inflammatory activity, the tests show that AHMeOH has a significant effect (P≤0.05) of inhibiting hypotonic-induced hemolysis with concentrations (100 and 200 μg / ml) with 77.55 and 90% respectively, and heat-induced hemolysis with percentages 81.75% and 87.44% respectively with significant difference (P ≤0.05). The obtained results with this plant reveal that the inhibition of denaturation of albumin is dose dependent. The concentration of 400 μg / ml gives denaturation inhibition of 81.00 ± 17.70% and the concentration 600 μg / ml gives an effect of 82.95 ± 17.40%. Regarding the haemostatic activity our extract with the doses 10 mg / ml, 20 mg / ml and 30 mg / ml confer a decrease of the plasma recalcification time in the tube, these concentrations could prolong the time of coagulation significantly compared to the control (P≤0.001). This result is an interesting indication in favor of haemostatic activity of AHMeOH. Conclusion: Atriplex Halimus has a strong anti-inflammatory activity and constitutes a potential source for the development of new treatments.

Keywords: albumin, atriplex halimus, hemostatic activity, methanolic extract

Procedia PDF Downloads 44
392 Mathematical Modelling, Simulation and Prototype Designing of Potable Water System on Basis of Forward Osmosis

Authors: Ridhish Kumar, Sudeep Nadukkandy, Anirban Roy

Abstract:

The development of reverse osmosis happened in 1960. Along the years this technique has been widely accepted all over the world for varied applications ranging from seawater desalination to municipal water treatment. Forward osmosis (FO) is one of the foremost technologies for low energy consuming solutions for water purification. In this study, we have carried out a detailed analysis on selection, design, and pricing for a prototype of potable water system for purifying water in emergency situations. The portable and light purification system is envisaged to be driven by FO. This pouch will help to serve as an emergency water filtration device. The current effort employs a model to understand the interplay of permeability and area on the rate of purification of water from any impure source/brackish water. The draw solution for the FO pouch is considered to be a combination of salt and sugar such that dilution of the same would result in an oral rehydration solution (ORS) which is a boon for dehydrated patients. However, the effort takes an extra step to actually estimate the cost and pricing of designing such a prototype. While the mathematical model yields the best membrane (compositions are taken from literature) combination in terms of permeability and area, the pricing takes into account the feasibility of such a solution to be made available as a retail item. The product is envisaged to be a market competitor for packaged drinking water and ORS combination (costing around $0.5 combined) and thus, to be feasible has to be priced around the same range with greater margins in order to have a better distribution. Thus a proper business plan and production of the same has been formulated in order to be a feasible solution for unprecedented calamities and emergency situations.

Keywords: forward osmosis, water treatment, oral rehydration solution, prototype

Procedia PDF Downloads 165
391 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 276
390 Strain Based Failure Criterion for Composite Notched Laminates

Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla

Abstract:

A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.

Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution

Procedia PDF Downloads 92
389 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: transmission loss, absorptive material, flow resistivity, thickness, frequency

Procedia PDF Downloads 234
388 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions

Procedia PDF Downloads 138
387 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling

Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar

Abstract:

The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.

Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength

Procedia PDF Downloads 54
386 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 112
385 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 51
384 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell

Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi

Abstract:

Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.

Keywords: Curcumin, insulin, Diabetes type-2, GLUT4

Procedia PDF Downloads 218
383 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 57
382 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: J. Plocek, P. Holec, S. Kubickova, B. Pacakova, I. Matulkova, A. Mantlikova, I. Němec, D. Niznansky, J. Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nano crystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nano composites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900–1200 °C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nano crystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ~ 4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nano particles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nano crystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: sol-gel method, nanocomposites, Rietveld refinement, Raman spectroscopy, Fourier transform infrared spectroscopy, magnetic properties, spinel, chromite

Procedia PDF Downloads 199
381 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process

Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban

Abstract:

The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.

Keywords: APB, nano composite, nano particles, severe plastic deformation

Procedia PDF Downloads 275
380 Production of Cellulose Nanowhiskers from Red Algae Waste and Its Application in Polymer Composite Development

Authors: Z. Kassab, A. Aboulkas, A. Barakat, M. El Achaby

Abstract:

The red algae are available enormously around the world and their exploitation for the production of agar product has become as an important industry in recent years. However, this industrial processing of red algae generated a large quantity of solid fibrous wastes, which constitute a source of a serious environmental problem. For this reason, the exploitation of this solid waste would help to i) produce new value-added materials and ii) to improve waste disposal from environment. In fact, this solid waste can be fully utilized for the production of cellulose microfibers and nanocrystals because it consists of large amount of cellulose component. For this purpose, the red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments with controlled conditions, in order to obtain pure cellulose microfibers and cellulose nanocrystals. The raw product and the as-extracted cellulosic materials were successively characterized using serval analysis techniques, including elemental analysis, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and transmission electron microscopy. As an application, the as extracted cellulose nanocrystals were used as nanofillers for the production of polymer-based composite films with improved thermal and tensile properties. In these composite materials, the adhesion properties and the large number of functional groups that are presented in the CNC’s surface and the macromolecular chains of the polymer matrix are exploited to improve the interfacial interactions between the both phases, improving the final properties. Consequently, the high performances of these composite materials can be expected to have potential in packaging material applications.

Keywords: cellulose nanowhiskers, food packaging, polymer composites, red algae waste

Procedia PDF Downloads 205
379 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 54
378 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar

Abstract:

The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property

Procedia PDF Downloads 148
377 Comparative Study of the Quality of Treated Water and Sludge from Wastewater Treatment Plants in the Peri-Urban Area of Casablanca

Authors: Meryem Zarri, Mohame Tahiri, Fouad Amraoui

Abstract:

In the context of water resources shortage that Morocco is experiencing in recent years, the mobilization of non-conventional resources becomes a necessity. The reuse of treated water and the bioconversion of biological sewage sludge into value-added products is considered an environmentally friendly and economical approach to the management of this significant resource which represent at least 80 % of consumed fresh wate In this work, we compare the quality of treated water and sewage sludge from wastewater treatment plants in the peri-urban Casablanca by analyzing different physicochemical and bacteriological parameters. The choice was made for three wastewater plants installed in different regions and monitored either by LYDEC and Commune of Had Soualem and use different technologies. Recycling of treated water in agriculture and watering of green spaces is dependent on the compliance of the parameters with international standards (WHO, FAO, …etc.) The preliminary tests of the samples taken during the second half of the year 2021 showed that the advanced technologies put in place at the level of the Mediouna and the airport zone stations (membrane reactor and activated sludge, respectively) give water to the output of the stations more respectful of the standards required in terms of physicochemical parameters (pH, Conductivity, Tubidity, COD, BOD5, TNK, and TPK) and bacteriological (fecal germs, Escherichia Coli, streptococci, Helminthes eggs). The parameters relating to the Had Soualem natural lagoon station are generally at the tolerance’s threshold. The results of analyzes relating to the residual sludge collected at the end of the cycle are, on the whole satisfactory despite a fluctuating variability of the bacteriological parameters.

Keywords: urban wastewater treatment plants, purified wastewater, sewage sludge, physicochemical parameters, bacteriological parameters, peri-urban area of ​​casablanca, morocco

Procedia PDF Downloads 126
376 The Role of the STAT3 Signaling for Melatonergic Synthetic Pathway in the Rat Pineal Gland

Authors: Simona Moravcova, Jiri Novotny, Zdenka Bendova

Abstract:

The pineal gland of the vertebrate brain is a circumventricular organ which serves as a major neuroendocrine gland with the primary function of rhythmic secretion of neurohormone melatonin under the control of the hypothalamic suprachiasmatic nucleus (SCN). Soon after the onset of the darkness, the activity of the key rate-limiting enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT), raises due to the increased release of norepinephrine from sympathetic neurons terminating on the parenchymal cells where it binds to β-adrenergic receptors. Melatonin codes the length of the night, and it is well recognized for its anti-inflammatory effects. However, to our knowledge, less is known about the effect of the immune system on the melatonin biosynthesis and the precise role of the STAT3 in the signaling pathway leading to the expression of AANAT. Lipopolysaccharide (LPS) is the essential component in the outer surface membrane of gram-negative bacteria and acts as a strong stimulator of natural and innate immunity. STAT3 acts as an important factor in immune response. Here we investigated the effect of LPS on the components of the melatonergic synthetic pathway in the pineal gland. The experiments were performed both in vivo and in vitro. The changes in AANAT activity were determined by radioenzymatic assay. PCR analyses were carried out to detect aa-nat, icer, spi-3 and stat3 gene expression. From our results, it is apparent that the high basal level of phosphorylated forms of STAT3 can be elevated after systemic as well as in vitro administration of LPS. Our experiments have shown that LPS reduces melatonin synthesis, nevertheless, the activity of AANAT was increased. Moreover, the basal level of phosphorylated STAT3 counteracts β-adrenergic receptor-mediated aa-nat gene expression and sustains its own and spi-3 gene expression. In conclusion, LPS can affect immunomodulators such as melatonin in the pineal gland.

Keywords: AANAT, lipopolysaccharide, pineal gland, rat, STAT3

Procedia PDF Downloads 145
375 Microbial Reduction of Terpenes from Pine Wood Material

Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Thomas Ters, Ewald Srebotnik, Thomas Kuncinger

Abstract:

Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process.

Keywords: GC-MS, pseudomonas, SPME, terpenes

Procedia PDF Downloads 321
374 Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water

Authors: Pooja Kumbhare

Abstract:

Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.

Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters

Procedia PDF Downloads 161
373 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study

Authors: Faris Tarlochan, Siva Mahesh Tangutooru

Abstract:

Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.

Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses

Procedia PDF Downloads 256
372 Collagen Scaffold Incorporated with Macrotyloma uniflorum Plant Extracts as a–Burn/Wound Dressing Material, in Vitro and in Vivo Evaluation

Authors: Thangavelu Muthukumar, Thotapalli Parvathaleswara Sastry

Abstract:

Collagen is the most abundantly available connective tissue protein, which is being used as a biomaterial for various biomedical applications. Presently, fish wastes are disposed improperly which is causing serious environmental pollution resulting in offensive odour. Fish scales are promising source of Type I collagen. Medicinal plants have been used since time immemorial for treatment of various ailments of skin and dermatological disorders especially cuts, wounds, and burns. Developing biomaterials from the natural sources which are having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. With these objectives in view we have developed a wound dressing material containing fish scale collagen (FSC) incorporated with Macrotyloma uniflorum plant extract (PE). The wound dressing composite was characterized for its physiochemical properties using conventional methods. SEM image revealed that the composite has fibrous and porous surface which helps in transportation of oxygen as well as absorbing wound fluids. The biomaterial has shown 95% biocompatibility with required mechanical strength and has exhibited antimicrobial properties. This biomaterial has been used as a wound dressing material in experimental wounds of rats. The healing pattern was evaluated by macroscopic observations, panimetric studies, biochemical, histopathological observations. The results showed faster healing pattern in the wounds treated with CSPE compared to the other composites used in this study and untreated control. These experiments clearly suggest that CSPE can be used as wound/burn dressing materials.

Keywords: collagen, wound dressing, Macrotyloma uniflorum, burn dressing

Procedia PDF Downloads 387
371 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations

Authors: Elbadawy A. Kamoun

Abstract:

Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.

Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy

Procedia PDF Downloads 253
370 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 94
369 From Synthesis to Application of Photovoltaic Perovskite Nanowires

Authors: László Forró

Abstract:

The organolead halide perovskite CH3NH3PbI3 and its derivatives are known to be very efficient light harvesters revolutionizing the field of solid-state solar cells. The major research area in this field is photovoltaic device engineering although other applications are being explored, as well. Recently, we have shown that nanowires of this photovoltaic perovskite can be synthesized which in association with carbon nanostructures (carbon nanotubes and graphene) make outstanding composites with rapid and strong photo-response. They can serve as conducting electrodes, or as central components of detectors. The performance of several miniature devices based on these composite structures will be demonstrated. Our latest findings on the guided growth of perovskite nanowires by solvatomorph graphoepitaxy will be presented. This method turned out to be a fairly simple approach to overcome the spatially random surface nucleation. The process allows the synthesis of extremely long (centimeters) and thin (a few nanometers) nanowires with a morphology defined by the shape of nanostructured open fluidic channels. This low-temperature solution-growth method could open up an entirely new spectrum of architectural designs of organometallic-halide-perovskite-based heterojunctions and tandem solar cells, LEDs and other optoelectronic devices. Acknowledgment: This work is done in collaboration with Endre Horvath, Massimo Spina, Alla Arakcheeva, Balint Nafradi, Eric Bonvin1, Andrzej Sienkievicz, Zsolt Szekrenyes, Hajnalka Tohati, Katalin Kamaras, Eduard Tutis, Laszlo Mihaly and Karoly Holczer The research is supported by the ERC Advanced Grant (PICOPROP670918).

Keywords: photovoltaics, perovskite, nanowire, photodetector

Procedia PDF Downloads 334
368 Implementing 3D Printed Structures as the Newest Textile Form

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.

Keywords: 3D printing technology, FDM, SLS, textile structure

Procedia PDF Downloads 309
367 Complicated Corneal Ulceration in Cats: Clinical Diagnosis and Surgical Management of 80 Cases

Authors: Khaled M. Ali, Ayman A. Mostafa, Soliman M. Soliman

Abstract:

Objectives: To describe the most common clinical and endoscopic findings associated with complicated corneal ulcers in cats, and to determine the short-term outcomes after surgical treatment of these cats. Animals Eighteen client-owned cats of different breeds (52 females and 28 males), ranging in age from 3 months to 6 years, with corneal ulcers. Procedures: Cats were clinically evaluated to initially determine the concurrent corneal abnormalities. Endoscopic examination was performed to determine the anterior and posterior segments abnormalities. Superficial and deep stromal ulcers were treated using conjunctival flap. Corneal sequestrum was treated by partial keratectomy and conjunctival flap. Anterior synechia was treated via peripheral iridectomy and separation of the adhesion between the iris and the inner cornea. Symblepharon was treated by removal of the adhered conjunctival membrane from the cornea. Incurable endophthalmitis was treated surgically by extirpation. Short-term outcomes after surgical managements of selected corneal abnormalities were then assessed clinically and endoscopically. Results: Deep stromal ulcer with descemetocele, endophthalmitis, symblepharon, corneal sequestration and anterior synechia with secondary glaucoma and corneal scarring were the most common complications of corneal ulcer. FHV-1 was a common etiologic factor of corneal ulceration. Persistent corneal scars of varying shape and size developed in cats with deep stromal ulcer, anterior synechia, and corneal sequestration. Conclusions: Domestic shorthaired and Persian cats were the most predisposed breeds to FHV-1 infection and subsequent corneal ulceration. Immediate management of patients with corneal ulcer would prevent serious complications. No age or sex predisposition to complicated corneal ulceration in cats.

Keywords: cats, complicated corneal ulceration, clinical, endoscopic diagnosis, FHV-1

Procedia PDF Downloads 262
366 In vitro Antioxidant and Antisickling Effects of Aerva javanica, and Ficus palmata Extracts on Sickle Cell Anemia

Authors: E. A. Alaswad, H. M. Choudhry, F. Z. Filimban

Abstract:

Sickle Cell Anemia (SCA) is one type of blood diseases related to autosomal disorder. The sickle shaped red blood cells are the main cause of many problems in the blood vessels and capillaries. Aerva Javanica (J) and Ficus Palmata (P) are medicinal plants that have many popular uses and have been proved their efficacy. The aim of this study was to assess the antioxidants activity and the antisickling effect of J and P extractions. The period of this study, air-dried leaves of J, and P plants were ground and the active components were extracted by maceration in water (W) and methanol (M) as solvents. The antioxidants activity of JW, PW, JM, and PM were assessed by way of the radical scavenging method using 2,2-diphenyl-1-picrylhydrazyl (DPPH). To determine the antisickling effect of J and P extracts. 20 samples were collected from sickle cell anemia patients. Different concentrations of J and P extracts (200 and 110 μg/mL) were added on the sample and incubated. A drop of each sample was examined with light microscope. Normal and sickled RBCs were calculated and expressed as the percent of sickling. The stabilization effect of the extracts was measured by the osmotic fragility test for erythrocytes. The finding suggests as estimated by DPPH method, all the extracts showed an antioxidant activity with a significant inhibition of the DPPH radicals. PM has the least IC50% with 71.49 μg/ml while JM was the most with 408.49 μg/ml. Sickle cells treated with extracts at different concentrations significantly reduced the percentage of sickling compering to control samples. However, JM 200 μg/mL give the highest anti-sickling affect with 17.4% of sickling compared to control 67.5 of sickling while PM at 200 μg/mL showed the highest membrane cell stability. In a conclusion, the results showed that J and P extracts have antisickling effects. Therefore, the Aerva javanica and Ficus palmata may have a role in SCA management and a good impact on the patient's lives.

Keywords: Aerva javanica, antioxidant, antisickling, Ficus palmata, sickle cell anemia

Procedia PDF Downloads 135
365 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment

Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem

Abstract:

Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.

Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling

Procedia PDF Downloads 223