Search results for: rubber artificial muscle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3061

Search results for: rubber artificial muscle

1471 Smart Construction Sites in KSA: Challenges and Prospects

Authors: Ahmad Mohammad Sharqi, Mohamed Hechmi El Ouni, Saleh Alsulamy

Abstract:

Due to the emerging technologies revolution worldwide, the need to exploit and employ innovative technologies for other functions and purposes in different aspects has become a remarkable matter. Saudi Arabia is considered one of the most powerful economic countries in the world, where the construction sector participates effectively in its economy. Thus, the construction sector in KSA should convoy the rapid digital revolution and transformation and implement smart devices on sites. A Smart Construction Site (SCS) includes smart devices, artificial intelligence, the internet of things, augmented reality, building information modeling, geographical information systems, and cloud information. This paper aims to study the level of implementation of SCS in KSA, analyze the obstacles and challenges of adopting SCS and find out critical success factors for its implementation. A survey of close-ended questions (scale and multi-choices) has been conducted on professionals in the construction sector of Saudi Arabia. A total number of twenty-nine questions has been prepared for respondents. Twenty-four scale questions were established, and those questions were categorized into several themes: quality, scheduling, cost, occupational safety and health, technologies and applications, and general perception. Consequently, the 5-point Likert scale tool (very low to very high) was adopted for this survey. In addition, five close-ended questions with multi-choice types have also been prepared; these questions have been derived from a previous study implemented in the United Kingdom (UK) and the Dominic Republic (DR), these questions have been rearranged and organized to fit the structured survey in order to place the Kingdom of Saudi Arabia in comparison with the United Kingdom (UK) as well as the Dominican Republic (DR). A total number of one hundred respondents have participated in this survey from all regions of the Kingdom of Saudi Arabia: southern, central, western, eastern, and northern regions. The drivers, obstacles, and success factors for implementing smart devices and technologies in KSA’s construction sector have been investigated and analyzed. Besides, it has been concluded that KSA is on the right path toward adopting smart construction sites with attractive results comparable to and even better than the UK in some factors.

Keywords: artificial intelligence, construction projects management, internet of things, smart construction sites, smart devices

Procedia PDF Downloads 154
1470 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 66
1469 Urinary Neutrophil Gelatinase Associated Lipocalin as Diagnostic Biomarkers for Lupus Nephritis

Authors: Lorena GóMez Escorcia, Gustavo Aroca MartíNez, Jose Luiz Villarreal, Elkin Navarro Quiroz

Abstract:

Lupus nephritis (LN) is a high-cost disease, occurring in about half of patients with Systemic Lupus Erythematosus (SLE). Renal biopsy constitutes the only protocol that, to date, allows a correct diagnosis of the level of renal involvement in these patients. However, this procedure can have various adverse effects such as kidney bleeding, muscle bleeding, infection, pain, among others. Therefore, the development of new diagnostic alternatives is required. The neutrophil gelatinase-associated lipocalin (NGAL) has been emerging as a novel biomarker of acute kidney injury. The aim of this study was to assess urinary NGAL levels as a marker for disease activity in patients with lupus nephritis. For this work included 50 systemic lupus erythematosus (SLE) patients, 50 with active lupus nephritis (LN), and 50 without autoimmune and renal disease as controls. TNGAL in urine samples was measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that patients with kidney damage had an elevated urinary NGAL as compared to patients with lupus without kidney damage and controls (p <0.005), and the mean of uNGAL was (28.72 ± 4.53), (19.51 ± 4.72), (8.91 ± 3.37) respectively. Measurement of urinary NGAL levels showed a very good diagnostic performance for discriminating patients with Lupus nephritis from SLE without renal damage and of control individuals.

Keywords: lupus nephritis, biomarker, NGAL, urine samples

Procedia PDF Downloads 205
1468 Experimental Lead Toxicity in Lohi Sheep: Risks and Impact on Edible Tissues

Authors: Muhammad Younus, Muhammad Sajid, Muti-ur-Rehman Khan, Aftab Ahmad Anjum, Muhammad Asif Idrees, Iahtasham Khan, Aman Ullah Khan, Sajid Umar, Raheela Akhtar

Abstract:

The present study was conducted to investigate the hazardous effects of lead on health and edible organs of Lohi sheep. The adult Lohi sheep (n=48) were randomly divided into two equal groups. The first group was administered lead acetate at dose of 70 mg/kg live body weight daily as 10% solution by oral route for a period of 90 days and the second group served as a negative control. Blood and tissue samples were collected at day 0, 30, 60 and 90 and analyzed for lead concentration by atomic absorption spectrophotometry. The kidney showed the highest lead concentration (p < 0.05) followed by liver and then muscle. Lead acetate treated sheep showed structural and behavioral changes during the last month of trial. Liver showed necrosis, hemorrhages and hyperactivation of macrophages. Kidney showed degenerative and necrotic changes in glomeruli and tubules and the characteristic intranuclear inclusion bodies in tubular epithelial cells on H and E staining. It was concluded that Lohi sheep is affected by lead intoxication at low dose for longer period and hence exhibits lead accumulation in edible tissues.

Keywords: Lohi sheep, lead acetate, edible tissue, histopathology

Procedia PDF Downloads 455
1467 Ethical Issues in AI: Analyzing the Gap Between Theory and Practice - A Case Study of AI and Robotics Researchers

Authors: Sylvie Michel, Emmanuelle Gagnou, Joanne Hamet

Abstract:

New major ethical dilemmas are posed by artificial intelligence. This article identifies an existing gap between the ethical questions that AI/robotics researchers grapple with in their research practice and those identified by literature review. The objective is to understand which ethical dilemmas are identified or concern AI researchers in order to compare them with the existing literature. This will enable to conduct training and awareness initiatives for AI researchers, encouraging them to consider these questions during the development of AI. Qualitative analyses were conducted based on direct observation of an AI/Robotics research team focused on collaborative robotics over several months. Subsequently, semi-structured interviews were conducted with 16 members of the team. The entire process took place during the first semester of 2023. The observations were analyzed using an analytical framework, and the interviews were thematically analyzed using Nvivo software. While the literature identifies three primary ethical concerns regarding AI—transparency, bias, and responsibility—the results firstly demonstrate that AI researchers are primarily concerned with the publication and valorization of their work, with the initial ethical concerns revolving around this matter. Questions arise regarding the extent to which to "market" publications and the usefulness of some publications. Research ethics are a central consideration for these teams. Secondly, another result shows that the researchers studied adopt a consequentialist ethics (though not explicitly formulated as such). They ponder the consequences of their development in terms of safety (for humans in relation to Robots/AI), worker autonomy in relation to the robot, and the role of work in society (can robots take over jobs?). Lastly, results indicate that the ethical dilemmas highlighted in the literature (responsibility, transparency, bias) do not explicitly appear in AI/Robotics research. AI/robotics researchers raise specific and pragmatic ethical questions, primarily concerning publications initially and consequentialist considerations afterward. Results demonstrate that these concerns are distant from the existing literature. However, the dilemmas highlighted in the literature also deserve to be explicitly contemplated by researchers. This article proposes that the journals these researchers target should mandate ethical reflection for all presented works. Furthermore, results suggest offering awareness programs in the form of short educational sessions for researchers.

Keywords: ethics, artificial intelligence, research, robotics

Procedia PDF Downloads 79
1466 A Molecular Dynamic Simulation Study to Explore Role of Chain Length in Predicting Useful Characteristic Properties of Commodity and Engineering Polymers

Authors: Lokesh Soni, Sushanta Kumar Sethi, Gaurav Manik

Abstract:

This work attempts to use molecular simulations to create equilibrated structures of a range of commercially used polymers. Generated equilibrated structures for polyvinyl acetate (isotactic), polyvinyl alcohol (atactic), polystyrene, polyethylene, polyamide 66, poly dimethyl siloxane, poly carbonate, poly ethylene oxide, poly amide 12, natural rubber, poly urethane, and polycarbonate (bisphenol-A) and poly ethylene terephthalate are employed to estimate the correct chain length that will correctly predict the chain parameters and properties. Further, the equilibrated structures are used to predict some properties like density, solubility parameter, cohesive energy density, surface energy, and Flory-Huggins interaction parameter. The simulated densities for polyvinyl acetate, polyvinyl alcohol, polystyrene, polypropylene, and polycarbonate are 1.15 g/cm3, 1.125 g/cm3, 1.02 g/cm3, 0.84 g/cm3 and 1.223 g/cm3 respectively are found to be in good agreement with the available literature estimates. However, the critical repeating units or the degree of polymerization after which the solubility parameter showed saturation were 15, 20, 25, 10 and 20 respectively. This also indicates that such properties that dictate the miscibility of two or more polymers in their blends are strongly dependent on the chosen polymer or its characteristic properties. An attempt has been made to correlate such properties with polymer properties like Kuhn length, free volume and the energy term which plays a vital role in predicting the mentioned properties. These results help us to screen and propose a useful library which may be used by the research groups in estimating the polymer properties using the molecular simulations of chains with the predicted critical lengths. The library shall help to obviate the need for researchers to spend efforts in finding the critical chain length needed for simulating the mentioned polymer properties.

Keywords: Kuhn length, Flory Huggins interaction parameter, cohesive energy density, free volume

Procedia PDF Downloads 191
1465 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture

Authors: K. N. Ashna

Abstract:

Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.

Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test

Procedia PDF Downloads 262
1464 In vivo Antiplatelet Activity Test of Wet Extract of Mimusops elengi L.'s Leaves on DDY Strain Mice as an Effort to Treat Atherosclerosis

Authors: Dewi Tristantini, Jason Jonathan

Abstract:

Coronary Artery Disease (CAD) is one of the deathliest diseases which is caused by atherosclerosis. Atherosclerosis is a disease that plaque builds up inside the arteries. Plaque is made up of fat, cholesterol, calcium, platelet, and other substances found in blood. The current treatment of atherosclerosis is to provide antiplatelet therapy treatment, but such treatments often cause gastrointestinal irritation, muscle pain and hormonal imbalance. Mimusops elengi L.’s leaves can be utilized as a natural and cheap antiplatelet’s source because it contains flavonoids such as quertecin. Antiplatelet aggregation effect of Mimusops elengi L.’s leaves’ wet extract was measured by bleeding time on DDY strain mice with the test substances were given orally during the period of 8 days. The bleeding time was measured on first day and 9th day. Empirically, the dose which is used for humans is 8.5 g of leaves in 600 ml of water. This dose is equivalent to 2.1 g of leaves in 350 ml of water for mice. The extract was divided into 3 doses for mice: 0.05 ml/day; 0.1 ml/day; 0.2 ml/day. After getting the percentage of the increase in bleeding time, data were analyzed by analysis of variance test (Anova), followed by individual comparison within the groups by LSD test. The test substances above respectively increased bleeding time 21%, 62%, and 128%. As the conclusion, the 0.02 ml/day dose of Mimusops elengi L.’s leaves’ wet extract could increase bleeding time better than clopidogrel as positive controls with 110% increase in bleeding time.

Keywords: antiplatelets, atheroschlerosis, bleeding time, Mimusops elengi

Procedia PDF Downloads 264
1463 Meat Yield and Proximate Composition Relations of Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax) in Different Sizes

Authors: Mehmet Celik, Celal Erbas, Mehtap Baykal, Aygül Kucukgulmez, Mahmut Ali Gokce, Bilge Kaan Tekelioglu

Abstract:

In this study, determination of differences in fresh meat yield and proximate compositions of different weight groups of sea bream and sea bass grown in cages in Izmir region of the Aegean Sea were aimed. For this purpose, the length and weight of five different weight groups of sea bass (I: 175.8±5.2, II: 227.3±10.2, III: 293.3±21.3, IV: 404±9.9, V: 508.7±46 g) and sea bream (I: 146.6±13.6, II: 239.8±21.7, III: 279.2±20.8, IV: 400.9±10.5, V: 546.8±0.8 g) were measured and the amount of edible and non-edible parts were determined. Besides this, protein, lipid, dry matter, ash, condition factor, HSI and VSI values were compared according to different weight groups for each species. According to the results of analysis, while the absolute meat yields of sea bream was between 69-294 g, it was between 71-252 g for the sea bass and the highest meat yields were found in fifth (V) weight groups of fish for both species. The relative meat yield (%) was determined in weight group II for sea bass and in the IV. group in sea bream with 51.9%. However, the amount of muscle tissue lipids in I. and V. weight groups of sea bream ranged between 3.6 to 11.9 % and ranged between 6.2 to 9.0 % for sea bass respectively. Protein, fillet and ash content increased in direct proportion to the weight. As a result, it can be speculated that when the meat yield and lipid rates were considered, IV. group in sea bream and II. group in sea bass are the most advantageous groups for the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2015-3830.

Keywords: sea bream, sea bass, meat yield, proximate composition, different weight

Procedia PDF Downloads 356
1462 Role of Desire in Risk-Perception: A Case Study of Syrian Refugees’ Migration towards Europe

Authors: Lejla Sunagic

Abstract:

The aim of the manuscript is to further the understanding of risky decision-making in the context of forced and irregular migration. The empirical evidence is collected through interviews with Syrian refugees who arrived in Europe via irregular pathways. Analytically, it has been approached through the juxtaposition between risk perception and the notion of desire. As different frameworks have been developed to address differences in risk perception, the common thread was the understanding that individual risk-taking has been addressed in terms of benefits outweighing risks. However, this framework cannot explain a big risk an individual takes because of an underprivileged position and due to a lack of positive alternatives, termed as risk-taking from vulnerability. The accounts of the field members of this study that crossed the sea in rubber boats to arrive in Europe make an empirical fit to such a postulate by reporting that the risk they have taken was not the choice but the only coping strategy. However, the vulnerability argument falls short of explaining why the interviewees, thinking retrospectively, find the risky journey they have taken to be worth it, while they would strongly advise others to restrain from taking such a huge risk. This inconsistency has been addressed by adding the notion of desire to migrate to the elements of risk perception. Desire, as a subjective experience, was what made the risk appear smaller in cost-benefit analysis at the time of decision-making of those who have realized migration. However, when they reflect on others in the context of potential migration via the same pathway, the interviewees addressed the others’ lack of capacity to avoid the same obstacles that they themselves were able to circumvent while omitting to reflect on others’ desire to migrate. Thus, in the risk-benefit analysis performed for others, the risk remains unblurred and tips over the benefits, given the inability to take into account the desire of others. If desire, as the transformative potential of migration, is taken out of the cost-benefit analysis of irregular migration, refugees might not have taken the risky journey. By casting the theoretical argument in the language of configuration, the study is filling in the gap of knowledge on the combination of migration drivers and the way they interact and produce migration outcomes.

Keywords: refugees, risk perception, desire, irregular migration

Procedia PDF Downloads 96
1461 Exploring the Potential of Replika: An AI Chatbot for Mental Health Support

Authors: Nashwah Alnajjar

Abstract:

This research paper provides an overview of Replika, an AI chatbot application that uses natural language processing technology to engage in conversations with users. The app was developed to provide users with a virtual AI friend who can converse with them on various topics, including mental health. This study explores the experiences of Replika users using quantitative research methodology. A survey was conducted with 12 participants to collect data on their demographics, usage patterns, and experiences with the Replika app. The results showed that Replika has the potential to play a role in mental health support and well-being.

Keywords: Replika, chatbot, mental health, artificial intelligence, natural language processing

Procedia PDF Downloads 86
1460 A Study of Social and Cultural Context for Tourism Management by Community Kamchanoad District, Amphoe Ban Dung, Udon Thani Province

Authors: Phusit Phukamchanoad, Chutchai Ditchareon, Suwaree Yordchim

Abstract:

This research was to study on background and social and cultural context of Kamchanoad community for sustainable tourism management. All data was collected through in-depth interview with village headmen, community committees, teacher, monks, Kamchanoad forest field officers and respected senior citizen above 60 years old in the community who have lived there for more than 40 years. Altogether there were 30 participants for this research. After analyzing the data, content from interview and discussion, Kamchanoad has both high land and low land in the region as well as swamps that are very capable of freshwater animals’ conservation. Kamchanoad is also good for agriculture and animal farming. 80% of Kamchanoad’s land are forest, freshwater and rice farms. Kamchanoad was officially set up as community in 1994 as “Baan Nonmuang”. Inhabitants in Kamchanoad make a living by farming based on sufficiency economy. They have rice farm, eucalyptus farm, cassava farm and rubber tree farm. Local people in Kamchanoad still believe in the myth of Srisutto Naga. They are still religious and love to preserve their traditional way of life. In order to understand how to create successful tourism business in Kamchanoad, we have to study closely on local culture and traditions. Outstanding event in Kamchanoad is the worship of Grand Srisutto, which is on the full-moon day of 6th month or Visakhabucha Day. Other big events are also celebration at the end of Buddhist lent, Naga firework, New Year celebration, Boon Mahachart, Songkran, Buddhist Lent, Boon Katin and Loy Kratong. Buddhism is the main religion in Kamchanoad. The promotion of tourism in Kamchanoad is expected to help spreading more income for this region. More infrastructures will be provided for local people as well as funding for youth support and people activities.

Keywords: social and culture area, tourism management, Kamchanoad Community, Udon Thani Province

Procedia PDF Downloads 216
1459 A Comparative Study of Multi-SOM Algorithms for Determining the Optimal Number of Clusters

Authors: Imèn Khanchouch, Malika Charrad, Mohamed Limam

Abstract:

The interpretation of the quality of clusters and the determination of the optimal number of clusters is still a crucial problem in clustering. We focus in this paper on multi-SOM clustering method which overcomes the problem of extracting the number of clusters from the SOM map through the use of a clustering validity index. We then tested multi-SOM using real and artificial data sets with different evaluation criteria not used previously such as Davies Bouldin index, Dunn index and silhouette index. The developed multi-SOM algorithm is compared to k-means and Birch methods. Results show that it is more efficient than classical clustering methods.

Keywords: clustering, SOM, multi-SOM, DB index, Dunn index, silhouette index

Procedia PDF Downloads 597
1458 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020

Authors: Lucille McWilliams

Abstract:

As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.

Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology

Procedia PDF Downloads 118
1457 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P. W. Tsai, J. W. Chen, C. W. Chen, C. Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method

Procedia PDF Downloads 684
1456 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 226
1455 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 256
1454 High-Resolution ECG Automated Analysis and Diagnosis

Authors: Ayad Dalloo, Sulaf Dalloo

Abstract:

Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.

Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases

Procedia PDF Downloads 295
1453 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 129
1452 Towards a Computational Model of Consciousness: Global Abstraction Workspace

Authors: Halim Djerroud, Arab Ali Cherif

Abstract:

We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning, and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we propose a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.

Keywords: artificial consciousness, cognitive architecture, global abstraction workspace, multi-agent system

Procedia PDF Downloads 340
1451 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems

Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain

Abstract:

The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.

Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web

Procedia PDF Downloads 336
1450 Application of Bioreactors in Regenerative Dentistry: Literature Review

Authors: Neeraj Malhotra

Abstract:

Background: Bioreactors in tissue engineering are used as devices that apply mechanical means to influence biological processes. They are commonly employed for stem cell culturing, growth and expansion as well as in 3D tissue culture. Contemporarily there use is well established and is tested extensively in the medical sciences, for tissue-regeneration and tissue engineering of organs like bone, cartilage, blood vessels, skin grafts, cardiac muscle etc. Methodology: Literature search, both electronic and hand search, was done using the following MeSH and keywords: bioreactors, bioreactors and dentistry, bioreactors & dental tissue engineering, bioreactors and regenerative dentistry. Articles published only in English language were included for review. Results: Bioreactors like, spinner flask-, rotating wall-, flow perfusion-, and micro-bioreactors and in-vivo bioreactor have been employed and tested for the regeneration of dental and like-tissues. These include gingival tissue, periodontal ligament, alveolar bone, mucosa, cementum and blood vessels. Based on their working dynamics they can be customized in future for regeneration of pulp tissue and whole tooth regeneration. Apart from this, they have been successfully used in testing the clinical efficacy and biological safety of dental biomaterials. Conclusion: Bioreactors have potential use in testing dental biomaterials and tissue engineering approaches aimed at regenerative dentistry.

Keywords: bioreactors, biological process, mechanical stimulation, regenerative dentistry, stem cells

Procedia PDF Downloads 207
1449 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane

Authors: Aziz Ghoufi, Ayman Kanaan

Abstract:

Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.

Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels

Procedia PDF Downloads 16
1448 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 624
1447 Effects of Local Decongestive Agents at Trachea and Lungs

Authors: Sertac Arslan, Guven Guney, Ayse Ipek Akyuz Unsal, Emre Demir, Buket Demirci

Abstract:

Purpose: There is little histologic data concerning effects of nasal decongestants on the respiratory tract. We aimed to put forth the effects of nasal decongestants on the trachea and lower airways of rats. Materials and Methods: Four to six months old 60 male rats were randomly categorized into 6 groups. Experimental drugs were applied to the same nostril of rats twice daily for 8 weeks (Xylometazolin, Benzalkolyum, EDTA, Sorbitol and combined drug solutions). We applied normal saline solution (NaCl %0.9) for the control group. In the end, trachea and both lungs were dissected and kept in formaldehyde for histopathologic evaluation. Results: Inflammation and bronchial edema were most common findings. While all rats in sorbitol group had increased numbers of type 2 pneumocytes; 80% of BAC group had increased numbers of type 2 pneumocytes. Spillover of tracheal epithelium was seen mostly in sorbitol, EDTA and combined drug groups (60%, 87.5%, 50% respectively). Bronchial smooth muscle hypertrophy was seen mostly in BAC and EDTA group (70%, 62.5% respectively). The number of goblet cells showed the significant difference between control-combined drug (p=0.025) and control-BAC (p=0.001) groups. Conclusions: Nasal decongestants can cause permanent changes at lower respiratory tract in addition to changes in upper respiratory tract.

Keywords: decongestive agents, xylometazoline, lung, trachea

Procedia PDF Downloads 173
1446 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing

Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda

Abstract:

The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.

Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries

Procedia PDF Downloads 246
1445 The Use of Global Positioning Systems to Evaluate the Effect of Protein and Carbohydrate Supplementation on Collegiate Soccer Performance

Authors: Joshua Bradley, Matthew Buns

Abstract:

This study aimed to identify the effect of concurrent nutritional supplementation on soccer performance as players ingested either carbohydrate CHO (52 g of Cytocarb Maltodextrin) or a combined carbohydrate and protein PRO (Muscle Milk Pro Series 17g CHO + 50 g PRO liquid) supplement. Twelve male, junior college soccer players (age: 18 ± 6 years, wt. 73.3 ± 8.6 kg) completed three trials wearing global positioning systems (GPS) to measure total running distance and sprinting distance during soccer simulation games. The first match simulation was a baseline match with no supplementation. One hour prior to the second match, simulation players were randomly assigned to one of two supplemental groups CHO or CHO + PRO. A repeated measures ANOVA with a Greenhouse-Geisser correction revealed a statistically significant increase in the total distance run for the CHO supplementation group in comparison to the CHO + PRO group (10.19 ± .200 km vs. 9.77± .194km, p = .035). Although the total running distance was meaningfully influenced by the supplementation, the pattern of response for total sprinting distance was not influenced by supplementation. There was a decline in sprinting distance and total running distance from first half to second half, both for the control (M = -0.01 km, SD = 0.17) and CHO supplementation group (-0.04 km, SD = .19), although these differences were not statistically meaningful. There was a positive correlation between sprinting distance and total distance, which was statistically significant (r = -.514, n = 36, p = .01) In conclusion, supplementation influenced the pattern of activity and demonstrated between-trial differences.

Keywords: GPS, nutrition, simulation, supplementation

Procedia PDF Downloads 144
1444 Altered L-Type Calcium Channel Activity in Atrioventricular Nodal Myocytes from Rats with Streptozotocin-Induced Type I Diabetes Mellitus

Authors: Kathryn H. Yull, Lina T. Al Kury, Frank Christopher Howarth

Abstract:

Cardiovascular diseases are frequently reported in patients with Type-1 Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. In the present study, using streptozotocin (STZ) rat model of Type-1 DM, we have characterized the changes in L-type calcium channel activity in single atrioventricular nodal (AVN) myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current (ICaL). A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. ICaL also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident. These findings demonstrate that experimentally–induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. The changes in ion channel activity may underlie the abnormalities in the cardiac electrical function that contribute to the high mortality levels in patients with DM.

Keywords: cardiac, ion-channel, diabetes, atrioventricular node, calcium channel

Procedia PDF Downloads 345
1443 Effect of Nicorandil in Bile Duct Ligation-Induced Liver Fibrosis in Rats: Role of Hepatic Stellate Cells

Authors: Y. S. Mohamed, L. A. Ahmed, H. A. Salem, A. M. Agha

Abstract:

Liver Fibrosis is one of the most serious conditions that affect the Egyptian society. In the present study, the effect of nicorandil was investigated in experimentally-induced liver fibrosis by bile duct ligation in rats. Nicorandil (3mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed a significant improvement in liver function tests (ALT and ALP) as well as a significant decrease in oxidative stress biomarkers (TBARS and GSH), area of fibrosis and activity of hepatic stellate cells as indicated by decreased expression of alpha smooth muscle actin.Moreover, nicorandil treatment decreased HSCs proliferation due to its inhibitory effects on protein kinase C(PKC) and Platelet derived growth factor (PDGF) . Oral administration of either glibenclamide (10 mg/kg/day)(a KATP channel blocker) or L-NAME (30 mg/kg/day) (an inhibitor of nitric oxide synthase) blocked the protective effects of nicorandil. However, nicorandil and L-NAME treated group showed more or less results similar to that of untreated bile duct ligated group. In conclusion, nicorandil was effective against the development of bile duct ligated-induced liver fibrosis in rats where activation of the NO pathway plays an important role in the protective effect nicorandil.

Keywords: hepatic stellate cells, nicorandil, nitric oxide donor, liver fibrosis

Procedia PDF Downloads 610
1442 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 124