Search results for: oxygen reduction reaction (ORR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8199

Search results for: oxygen reduction reaction (ORR)

6609 Microbial Reduction of Terpenes from Pine Wood Material

Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Thomas Ters, Ewald Srebotnik, Thomas Kuncinger

Abstract:

Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process.

Keywords: GC-MS, pseudomonas, SPME, terpenes

Procedia PDF Downloads 353
6608 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 292
6607 A Brief Review on Doping in Sports and Performance-Enhancing Drugs

Authors: Zahra Mohajer, Afsaneh Soltani

Abstract:

Doping is a major issue in competitive sports and is favored by vast groups of athletes. The feeling of being higher-ranking than others and gaining fame has caused many athletes to misuse drugs. The definition of doping is to use prohibited substances and/or methods that help physical or mental performances or both. Doping counts as the illegal use of chemical substances or drugs, excessive amounts of physiological substances to increase the performance at or out of competition or even the use of inappropriate medications to treat an injury to gain the ability to participate in a competition. The International Olympic Committee (IOC) and World Anti-Doping Agency (WADA) have forbidden these substances to ensure fair and equal competition and also the health of the competitors. As of 2004 WADA has published an international list of illegal substances used for doping, which is updated annually. In the process of the Genome Project scientists have gained the ability to treat numerous diseases by gene therapy, which may result in bodily performance increase and therefore a potential opportunity to misuse by some athletes. Gene doping is defined as the non-therapeutic direct and indirect genetic modifications using genetic materials that can improve the performances in sports events. Biosynthetic drugs are a form of indirect genetic engineering. The method can be performed in three ways such as injecting the DNA directly into the muscle, inserting the genetically engineered cells, or transferring the DNA using a virus as a vector. Erythropoietin is a hormone majorly released by the kidney and in small amounts by the liver. Its function is to stimulate the erythropoiesis and therefore the more production of red blood cells (RBC) which causes an increase in Hemoglobin (Hb). During this process, the oxygen delivery to muscles will increase, which will improve athletic performance and postpone exhaustion. There are ways to increase the oxygen transferred to muscles such as blood transfusion, stimulating the production of red blood cells by using Erythropoietin (EPO), and also using allosteric effectors of Hemoglobin. EPO can either be injected as a protein or can be inserted into the cells as the gene which encodes EPO. Adeno-associated viruses have been employed to deliver the EPO gene to the cells. Employing the genes that naturally exist in the human body such as the EPO gene can reduce the risk of detecting gene doping. The first research about blood doping was conducted in 1947. The study has shown that an increase in hematocrit (HCT) up to 55% following homologous transfusion makes it more unchallenging for the body to perform the exercise at the altitude. Thereafter athletes’ attraction to blood infusion escalated. Also, a study has demonstrated that by reinfusing their own blood 4 weeks after being drawn, three men have shown a rise in Hb level which improved the oxygen uptake, and a delay in exhaustion. The list of performance-enhancing drugs is published by WADA annually and includes the following drugs: anabolic agents, hormones, Beta-2 agonists, Beta-blockers, Diuretics, Stimulants, narcotics, cannabinoids, and corticosteroids.

Keywords: doping, PEDs, sports, WADA

Procedia PDF Downloads 112
6606 Delhi Metro: A Race towards Zero Emission

Authors: Pramit Garg, Vikas Kumar

Abstract:

In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.

Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport

Procedia PDF Downloads 132
6605 Hydration Matters: Impact on 3 km Running Performance in Trained Male Athletes Under Heat Conditions

Authors: Zhaoqi He

Abstract:

Research Context: Endurance performance in hot environments is influenced by the interplay of hydration status and physiological responses. This study aims to investigate how dehydration, up to 2.11% body weight loss, affects the 3 km running performance of trained male athletes under conditions mimicking high temperatures. Methodology: In a randomized crossover design, five male athletes participated in two trials – euhydrated (EU) and dehydrated (HYPO). Both trials included a 70-minute preload run at 55-60% VO2max in 32°C and 50% humidity, followed by a 3-kilometer time trial. Fluid intake was restricted in HYPO to induce a 2.11% body weight loss. Physiological metrics, including heart rate, core temperature, and oxygen uptake, were measured, along with perceptual metrics like perceived exertion and thirst sensation. Findings: The 3-kilometer run completion times showed no significant differences between EU and HYPO trials (p=0.944). Physiological indicators, including heart rate, core temperature, and oxygen uptake, did not significantly vary (p>0.05). Thirst sensation was markedly higher in HYPO (p=0.013), confirming successful induction of dehydration. Other perceptual metrics and gastrointestinal comfort remained consistent. Conclusion: Contrary to the hypothesis, the study reveals that dehydration, inducing up to 2.11% body weight loss, does not significantly impair 3 km running performance in trained male athletes under hot conditions. Thirst sensation was notably higher in the dehydrated state, emphasizing the importance of considering perceptual factors in hydration strategies. The findings suggest that trained runners can maintain performance despite moderate dehydration, highlighting the need for nuanced hydration guidelines in hot-weather running.

Keywords: hypohydration, euhydration, hot environment, 3km running time trial, endurance performance, trained athletes, perceptual metrics, dehydration impact, physiological responses, hydration strategies

Procedia PDF Downloads 71
6604 Evaluation of the Irritation Potential of Three Topical Formulations of Minoxidil 5% + Finasteride 0.1% Using Patch Test

Authors: Joshi Rajiv, Shah Priyank, Thavkar Amit, Rohira Poonam, Mehta Suyog

Abstract:

Topical formulation containing minoxidil and finasteride helps hair growth in the treatment of male androgenetic alopecia. The objective of this study is to compare the irritation potential of three conventional formulations of minoxidil 5% + finasteride 0.1% topical solution of in human patch test. The study was a single centre, double blind, non-randomized controlled study in 53 healthy adult Indian subjects. Occlusive patch test for 24 hours was performed with three formulations of minoxidil 5% + finasteride 0.1% topical solution. Products tested included aqueous based minoxidil 5% + finasteride 0.1% (AnasureTM-F, Sun Pharma, India – Brand A), lipid based minoxidil 5% + finasteride 0.1% (Brand B) and aqueous based minoxidil 5% + finasteride 0.1% (Brand C). Isotonic saline 0.9% and 1% w/w sodium lauryl sulphate were included as negative control and positive control respectively. Patches were applied and removed after 24 hours. The skin reaction was assessed and clinically scored 24 hours after the removal of the patches under constant artificial daylight source using the Draize scale (0-4 points scale for erythema/dryness//wrinkles and for oedema). Follow-up was scheduled after one week to confirm recovery for any reaction. A combined mean score up to 2.0/8.0 indicates a product is “non-irritant” and a score between 2.0/8.0 and 4.0/8.0 indicates “mildly irritant” and a score above 4.0/8.0 indicates “irritant”. The procedure of the patch test followed the principles outlined by the Bureau of Indian Standards (BIS) (IS 4011:2018; Methods of Test for safety evaluation of Cosmetics-3rd revision). Fifty three subjects with mean age 31.9 years (25 males and 28 females) participated in the study. The combined mean score ± standard deviation were: 0.06 ± 0.23 (Brand A), 0.81 ± 0.59 (Brand B), 0.38 ± 0.49 (Brand C), 2.92 ± 0.47 (positive control) and 0.0 ± 0.0 (Negative control). This means the score of Brand A (Sun Pharma product) was significantly lower than that of Brand B (p=0.001) and that of Brand C (p=0.001). The combined mean erythema score ± standard deviation were: 0.06 ± 0.23 (Brand A), 0.81 ± 0.59 (Brand B), 0.38 ± 0.49 (Brand C), 2.09 ± 0.4 (Positive control) and 0.0 ± 0.0 (Negative control). The mean erythema score of Brand A was significantly lower than Brand B (p=0.001) and that of Brand C (p=0.001). Any reaction observed at 24hours after patch removal subsided in a week. All the three topical formulations of minoxidil 5% + finasteride 0.1% were non-irritant. Brand A of minoxidil 5% + finasteride 0.1% (Sun Pharma) was found to be the least irritant than Brand B and Brand C based on the combined mean score and mean erythema score in the human patch test as per the BIS, IS 4011:2018

Keywords: erythema, finasteride, irritation, minoxidil, patch test

Procedia PDF Downloads 88
6603 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing

Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe

Procedia PDF Downloads 309
6602 Circular Economy: Development of Quantitative Material Wastage Management Plan for Effective Waste Reduction in Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and GHGs emissions in the economy of different countries and cities. Many types of research had conducted and discussed the topic of waste management and waste management being a macro-level control is well developed in the building and construction industry. However, there is little research and studies on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. In this paper, we will focus on the potentialities and importance of material wastage management and review the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy

Procedia PDF Downloads 158
6601 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention

Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova

Abstract:

Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16

Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes

Procedia PDF Downloads 168
6600 Protective Role of Autophagy Challenging the Stresses of Type 2 Diabetes and Dyslipidemia

Authors: Tanima Chatterjee, Maitree Bhattacharyya

Abstract:

The global challenge of type 2 diabetes mellitus is a major health concern in this millennium, and researchers are continuously exploring new targets to develop a novel therapeutic strategy. Type 2 diabetes mellitus (T2DM) is often coupled with dyslipidemia increasing the risks for cardiovascular (CVD) complications. Enhanced oxidative and nitrosative stresses appear to be the major risk factors underlying insulin resistance, dyslipidemia, β-cell dysfunction, and T2DM pathogenesis. Autophagy emerges to be a promising defense mechanism against stress-mediated cell damage regulating tissue homeostasis, cellular quality control, and energy production, promoting cell survival. In this study, we have attempted to explore the pivotal role of autophagy in T2DM subjects with or without dyslipidemia in peripheral blood mononuclear cells and insulin-resistant HepG2 cells utilizing flow cytometric platform, confocal microscopy, and molecular biology techniques like western blotting, immunofluorescence, and real-time polymerase chain reaction. In the case of T2DM with dyslipidemia higher population of autophagy, positive cells were detected compared to patients with the only T2DM, which might have resulted due to higher stress. Autophagy was observed to be triggered both by oxidative and nitrosative stress revealing a novel finding of our research. LC3 puncta was observed in peripheral blood mononuclear cells and periphery of HepG2 cells in the case of the diabetic and diabetic-dyslipidemic conditions. Increased expression of ATG5, LC3B, and Beclin supports the autophagic pathway in both PBMC and insulin-resistant Hep G2 cells. Upon blocking autophagy by 3-methyl adenine (3MA), the apoptotic cell population increased significantly, as observed by caspase‐3 cleavage and reduced expression of Bcl2. Autophagy has also been evidenced to control oxidative stress-mediated up-regulation of inflammatory markers like IL-6 and TNF-α. To conclude, this study elucidates autophagy to play a protective role in the case of diabetes mellitus with dyslipidemia. In the present scenario, this study demands to have a significant impact on developing a new therapeutic strategy for diabetic dyslipidemic subjects by enhancing autophagic activity.

Keywords: autophagy, apoptosis, dyslipidemia, reactive oxygen species, reactive nitrogen species, Type 2 diabetes

Procedia PDF Downloads 135
6599 Achieving Sustainable Rapid Construction Using Lean Principles

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

There is the need to take the holistic approach in achieving sustainable construction for a contemporary practice. Sustainable construction is the practice that involved method of human preservation of the environment, whether economically or socially through responsibility, management of resources and maintenance utilizing support. This paper shows the correlation of achieving rapid construction with sustainable concepts using lean principles. Lean principles being used widely in the manufacturing industry, but this research will demonstrate the principles into building construction. Lean principle offers the benefits of stabilizing work flow and elimination of unnecessary work. Therefore, this principle contributes to time and waste reduction. The correlation shows that pulling factor provides the improvement of progress curve and stabilizing the time-quality relation. The finding shows the lean principles offer the elements of rapid construction synchronized with the elements of sustainability.

Keywords: sustainable construction, rapid construction, time reduction, lean construction

Procedia PDF Downloads 237
6598 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 404
6597 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 127
6596 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 481
6595 Randomized Controlled Study of the Antipyretic Efficacy of Oral Paracetamol, Intravenous Paracetamol, and Intramuscular Diclofenac

Authors: Firjeeth C. Paramba, Vamanjore A. Naushad, Nishan K. Purayil, Osama H. Mohammed, Prem Chandra

Abstract:

Background: Fever is a common problem in adults visiting the emergency department. Extensive studies have been done in children comparing the efficacy of various antipyretics. However, studies on the efficacy of antipyretic drugs in adults are very scarce. To the best of our knowledge, no controlled trial has been carried out comparing the antipyretic efficacy of paracetamol (oral and intravenous) and intramuscular diclofenac in adults. Methods: In this parallel-group, open-label trial, participants aged 14–75 years presenting with fever who had a temperature of more than 38.5°C were enrolled and treated. Participants were randomly allocated to receive treatment with 1,000 mg oral paracetamol (n=145), 1,000 mg intravenous paracetamol (n=139), or 75 mg intramuscular diclofenac (n=150). The primary outcome was degree of reduction in mean oral temperature at 90 minutes. The efficacy of diclofenac versus oral and intravenous paracetamol was assessed by superiority comparison. Analysis was done using intention to treat principles. Results: After 90 minutes, all three groups showed a significant reduction in mean temperature, with intramuscular diclofenac showing the greatest reduction (−1.44 ± 0.43, 95% confidence interval [CI] −1.4 to −2.5) and oral paracetamol the least (−1.08 ± 0.51, 95% CI −0.99 to −2.2). After 120 minutes, there was a significant difference observed in the mean change from baseline temperature between the three treatment groups (P, 0.0001). Significant changes in temperature were observed in favor of intramuscular diclofenac over oral and intravenous paracetamol at each time point from 60 minutes through 120 minutes inclusive. Conclusion: Both intramuscular diclofenac and intravenous paracetamol showed superior antipyretic activity than oral paracetamol. However, in view of its ease of administration, intramuscular diclofenac can be used as a first-choice antipyretic in febrile adults in the emergency department.

Keywords: antipyretic, intramuscular, intravenous, paracetamol, diclofenac, emergency department

Procedia PDF Downloads 375
6594 Investigation of Static Stability of Soil Slopes Using Numerical Modeling

Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti

Abstract:

Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.

Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method

Procedia PDF Downloads 168
6593 Using Polymerase Chain Reaction Technique to Observe the Resistant Strains of Pectinophora gossypiella against Cry1Ac Expressing Cotton

Authors: Zunnu Raen Akhtar, U. Irshad, M. Majid

Abstract:

Due to the widespread cultivation of transgenic cotton, intense selection pressure resulted in resistant allele in pink bollworm, Pectinophora gossypiella (Gelechiidae: Lepidoptera). A resistant strain of pink bollworm against transgenic cotton has become a challenge to Integrated Resistance Management (IRM) in the World. Laboratory and field studies were conducted to determine the resistant strains of pink bollworm by performing bioassay, extracting the DNA, conducting PCR of both laboratory as well as field collected pink bollworms to observe the developed resistance. In all of the studies, two Bt varieties FH-142 and FH-118 expressing Cry1Ac compared to non-Bt (Control) were tested against pink bollworm. In the laboratory, bioassay results showed that there was no significant mortality difference between Bt and non-Bt varieties. Similar mortality percentage was observed in transgenic and non-transgenic (control) variety. Insects which were survived after bioassay, as well as those collected from the Bt cotton fields, were selected for further molecular studies. DNA extraction followed by PCR was conducted to check the resistant strains in pink bollworm. In field studies, we also observed the population dynamics of pink boll worms on Bt as compared to non-Bt varieties. Laboratory and field studies confirmed that resistant strains occurs in Pakistani Bt cotton fields. Different strategies should be adopted to combat that serious prevailing resistance issues.

Keywords: transgenic cotton, resistance, pectinophora gossypiella, , integrated resistance management (IRM), polymerase chain reaction (PCR)

Procedia PDF Downloads 242
6592 The Prevalence of Blood-Borne Viral Infections among Autopsy Cases in Jordan

Authors: Emad Al-Abdallat, Faris G. Bakri, Azmi Mahafza, Rayyan Al Ali, Nidaa Ababneh, Ahmed Idhair

Abstract:

Background: Morgues are high-risk areas for the spread of infection from the cadavers to the staff during the postmortem examination. Infection can spread from corpses to workers by the airborne route, by direct contact, or from needle and sharp object injuries. Objective: Knowledge about the prevalence of these infections among autopsies is prudent to appreciate any risk of transmission and to further enforce safety measures. Method: A total of 242 autopsies were tested. Age ranged from 3 days to 94 years (median 75.5 years, mean 45.3 (21.9 ± SD)). There were 172 (71%) males. Results: The cause of death was considered natural in 137 (56.6%) cases, accidental in 89 (36.8%), homicidal in 9 (3.7%), suicidal in 4 (1.7%), and unknown in 3 (1.2%). Hepatitis B surface antigen was positive in 5 (2.1%) cases. Hepatitis C virus antibody was detected in 5 (2.1%) cases and the hepatitis C virus polymerase chain reaction was positive in 2 of them (0.8%). HIV antibody was not detected in any of the cases. Conclusions: Autopsies can be associated with exposure to blood borne viruses. Autopsies performed during the study period were tested for hepatitis B surface antigen, hepatitis C virus antibody, and human immunodeficiency virus antibody. Positive tests were subsequently confirmed by polymerase chain reaction. There is low prevalence of infections with these viruses in our autopsy cases. However, the risk of transmission remains a threat. Healthcare workers in the forensic departments should adhere to standard precautions.

Keywords: autopsy, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Jordan

Procedia PDF Downloads 384
6591 A Case Study: Effect of Low Carbs High Fats Diet (Also Known as LCHF Diet) Combined with Fried Foods in Extra Virgin Olive Oil in Patient with Type 2 Diabetes and Central Obesity

Authors: Cristian Baldini

Abstract:

‘Diabesity’ is a term for diabetes occurring in the context of obesity. The positive effect of LCHF diets (low-carb, high-fat diets) is well documented: LCHF diets are at least as effective as other dietary strategies for reducing body weight, improving glycaemic control, and reducing both hyperinsulinaemia and blood glucose (reduction of HbA1c) in type 2 diabetes and have unique positive effects on blood lipid concentrations and cardiovascular risk factors. Also, in obese insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal. This case study shows that if combined, both dietary strategies produce a strong effect on blood glucose, resulting in a “forced” reduction of exogenous insulin injection to avoid the problem of hypoglycaemia. Blood tests after three months of this dietary treatment show how HbA1c, triglycerides, and blood lipid profile (LDL, HDL, Total Cholesterol) are improved despite the reduction of exogenous insulin injection of 80% with a parallel body weight decrease of 15%. For continuous glucose monitoring (CGM), the patient used FreeStyle Libre before and after the dietary treatment. In order to check general body functions and glycosuria, the patient used the urine test Multistix 10 SG Siemens.

Keywords: diabetes, obesity, diabesity, fat, fried foods

Procedia PDF Downloads 78
6590 Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment

Authors: Jae Gon Kim, Yongchan Cho, Jungwha Lee

Abstract:

Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction.

Keywords: acid rock drainage, alkali phosphate treatment, pyrite rich rock, safe disposal

Procedia PDF Downloads 155
6589 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 82
6588 Clinical Evidence of the Efficacy of ArtiCovid (Artemisia Annua Extract) on Covid-19 Patients in DRC

Authors: Md, MCS, MPH Munyangi Wa Nkola Jerome

Abstract:

The pandemic of COVID-19, a recently discovered contagious respiratory disease called SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2 Majority of people infected with SARS-CoV-2: Asymptomatic or mildly ill 14% of patients will develop severe illness requiring hospitalization and oxygen support, and 5% of these will be transferred to an intensive care unit, Urgent need for new treatments that can be used quickly to avoid transfer of patients to intensive care and death. Objective: To evaluate the clinical activity (efficacy) of ArtiCovid Hypothesis: Administration of 3 times a teaspoon per day by COVID patients (symptomatic, mild, or moderate forms) results in the disappearance of symptoms and improvement of biological parameters (including viral suppression). Clinical efficacy: the disappearance of clinical signs after seven days of treatment; reduction in the rate of patients transferred to intensive care units for mechanical ventilation and a decrease in mortality related to this infection Paraclinical efficacy: improvement of biological parameters (mainly d-dimer, CRP) Virological efficacy: suppression of the viral load after seven days of treatment (control test on the seventh day is negative) Pilot study using a standardized solution based on Artemisia annua (ARTICOVID) Obtaining authorization from the health authorities of the province of Central Kongo Recruitment of volunteer patients, mainly in the Kinkanda HospitalCarrying out tests before and after treatment as well as analyses before and after treatment. The protocol obtained the approval of the ethics committee 50 patients who completed the treatment were aged between 2 and 70 years, with an average age of 36 yearsMore half were male (56%). One in four patients was a health professional (25%) Of the 12 health professionals, 4 were physicians. For those who reported the date of onset of the disease, the average duration between the appearance of the first symptoms and the medical consultation was 5 days. The 50 patients put on ARTICOVID were discharged alive with CRP levels substantially normalizedAfter seven to eight days, the control test came back negative. This pilot study suggests that ARTICOVID may be effective against COVID-19 infection.

Keywords: artiCovid, DRC, Covid-19, SARS_COV_2

Procedia PDF Downloads 123
6587 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 271
6586 Dewatering Agents for Granular Bauxite

Authors: Bruno Diniz Fecchio

Abstract:

Operations have been demanding increasingly challenging operational targets for the dewatering process, requiring lower humidity for concentrates. Chemical dewatering agents are able to improve solid/liquid separation processes, allowing operations to deal with increased complexity caused by either mineralogical changes or seasonal events that present operations with challenging moisture requirements for transportation and downstream steps. These chemicals reduce water retention by reducing the capillary pressure of the mineral and contributing to improved water drainage. This current study addresses the reagent effects on pile dewatering for Bauxite. Such chemicals were able to decrease the moisture of granulated Bauxite (particle size of 5 – 50 mm). The results of the laboratory scale tests and industrial trials presented the obtention of up to 11% relative moisture reduction, which reinforced the strong interaction between dewatering agents and the particle surface of granulated Bauxite. The evaluated dewatering agents, however, did not present any negative impact on these operations.

Keywords: bauxite, dewatering agents, pile dewatering, moisture reduction

Procedia PDF Downloads 87
6585 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 329
6584 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.

Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment

Procedia PDF Downloads 457
6583 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 107
6582 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon

Procedia PDF Downloads 407
6581 The Impact of Artesunate-Amodiaquine on Schistosoma mansoni Infection among Children Infected by Plasmodium in Rural Area of Lemfu, Kongo Central, Democratic Republic of the Congo

Authors: Mbanzulu Kennedy, Zanga Josue, Wumba Roger

Abstract:

Malaria and schistosomiasis remain life-threatening public health problems in sub-Saharan Africa. The infection pattern related to age indicates that preschool and school-age children are at the highest risk of malaria and schistosomiasis. Both parasitic infections, separately or combined, may have negative impacts on the haemoglobin concentration levels. The existing data revealed that artemisinin derivatives commonly used to cure malaria present also in antischistosomal activities. The current study investigated the impact of Artesunate-Amodiaquine (AS-AQ) on schistosomiasis when administered to treat malaria in rural area of Lemfu, DRC. A prospective longitudinal study including 171 coinfected children screened for anaemia, Schistosoma mansoni, and Plasmodium falciparum infections. The egg reduction rate and haemoglobin concentration were assessed four weeks after the treatment with AS-AQ, of all coinfected children of this series. One hundred and twenty-five (74.4%) out of 168 coinfected children treated and present during the assessment were found stool negative for S. mansoni eggs. Out of 43 (25.6%) children who remained positives, 37 (22%) showed a partial reduction of eggs amount, and no reduction was noted in 3.6% of coinfected. The mean of haemoglobin concentration and the prevalence of anaemia were, respectively, 10.74±1.5g/dl , 11.2±1.3g/dl, and 64.8%, 51.8%, respectively, before and after treatment, p<0.001. The AS-AQ commonly used against Plasmodium allowed curing S. mansoni in coinfected children and increasing the Hb level. For the future, the randomized and multicentric clinical trials are needed for a better understanding of the effectiveness of AS-AQ against Schistosoma spp. The trial registration number was 3487183.

Keywords: paludisme, schistosomiase, as-aq, enfants lemfu

Procedia PDF Downloads 107
6580 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 325