Search results for: parameters for training needs assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16886

Search results for: parameters for training needs assessment

866 A Rural Journey of Integrating Interprofessional Education to Foster Trust

Authors: Julia Wimmers Klick

Abstract:

Interprofessional Education (IPE) is widely recognized as a valuable approach in healthcare education, despite the challenges it presents. This study explores IP surface anatomy lab sessions, with a focus on fostering trust and collaboration among healthcare students. The research is conducted within the context of rural healthcare settings in British Columbia (BC), where a medical school and a physical therapy (PT) program operate under the Faculty of Medicine at the University of British Columbia (UBC). While IPE sessions addressing soft skills have been implemented, the integration of hard skills, such as Anatomy, remains limited. To address this gap, a pilot feasibility study was conducted with a positive outcome, a follow-up study involved these IPE sessions aimed at exploring the influence of bonding and trust between medical and PT students. Data were collected through focus groups comprising participating students and faculty members, and a structured SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis was conducted. The IPE sessions, 3 in total, consisted of a 2.5-hour lab on surface anatomy, where PT students took on the teaching role, and medical students were newly exposed to surface anatomy. The focus of the study was on the relationship-building process and trust development between the two student groups, rather than assessing the acquisition of surface anatomy skills. Results indicated that the surface anatomy lab served as a suitable tool for the application and learning of soft skills. Faculty members observed positive outcomes, including productive interaction between students, reversed hierarchy with PT students teaching medical students, practicing active listening skills, and using a mutual language of anatomy. Notably, there was no grade assessment or external pressure to perform. The students also reported an overall positive experience; however, the specific impact on the development of soft skill competencies could not be definitively determined. Participants expressed a sense of feeling respected, welcomed, and included, all of which contributed to feeling safe. Within the small group environment, students experienced becoming a part of a community of healthcare providers that bonded over a shared interest in health professions education. They enjoyed sharing diverse experiences related to learning across their varied contexts, without fear of judgment and reprisal that were often intimidating in single professional contexts. During a joint Christmas party for both cohorts, faculty members observed students mingling, laughing, and forming bonds. This emphasized the importance of early bonding and trust development among healthcare colleagues, particularly in rural settings. In conclusion, the findings emphasize the potential of IPE sessions to enhance trust and collaboration among healthcare students, with implications for their future professional lives in rural settings. Early bonding and trust development are crucial in rural settings, where healthcare professionals often rely on each other. Future research should continue to explore the impact of content-concentrated IPE on the development of soft skill competencies.

Keywords: interprofessional education, rural healthcare settings, trust, surface anatomy

Procedia PDF Downloads 66
865 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing

Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto

Abstract:

In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.

Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration

Procedia PDF Downloads 239
864 Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A is known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group had also MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.

Keywords: children, cortisol, fetuin A, morbid obesity, thyrotropin

Procedia PDF Downloads 175
863 Randomized Controlled Trial of Ultrasound Guided Bilateral Intermediate Cervical Plexus Block in Thyroid Surgery

Authors: Neerja Bharti, Drishya P.

Abstract:

Introduction: Thyroidectomies are extensive surgeries involving a significant degree of tissue handling and dissection and are associated with considerable postoperative pain. Regional anaesthesia techniques have immerged as possible inexpensive and safe alternatives to opioids in the management of pain after thyroidectomy. The front of the neck is innervated by branches from the cervical plexus, and hence, several approaches for superficial and deep cervical plexus block (CPB) have been described to provide postoperative analgesia after neck surgery. However, very few studies have explored the analgesic efficacy of intermediate CPB for thyroid surgery. In this study, we have evaluated the effects of ultrasound-guided bilateral intermediate CPB on perioperative opioid consumption in patients undergoing thyroidectomy under general anesthesia. Methods: In this prospective randomized controlled study, fifty ASA grade I-II adult patients undergoing thyroidectomy were randomly divided into two groups: the study group received ultrasound-guided bilateral intermediate CPB with 10 ml 0.5% ropivacaine on each side, while the control group received the same block with 10 ml normal saline on each side just after induction of anesthesia. Anesthesia was induced with propofol, fentanyl, and vecuronium and maintained with propofol infusion titrated to maintain the BIS between 40 and 60. During the postoperative period, rescue analgesia was provided with PCA fentanyl, and the pain scores, total fentanyl consumption, and incidence of nausea and vomiting during 24 hours were recorded, and overall patient satisfaction was assessed. Results: The groups were well-matched with respect to age, gender, BMI, and duration of surgery. The difference in intraoperative propofol and fentanyl consumption was not statistically significant between groups. However, the intraoperative haemodynamic parameters were better maintained in the study group than in the control group. The postoperative pain scores, as measured by VAS at rest and during movement, were lower, and the total fentanyl consumption during 24 hours was significantly less in the study group as compared to the control group. Patients in the study group reported better satisfaction scores than those in the control group. No adverse effects of ultrasound-guided intermediate CPB block were reported. Conclusion: We concluded that ultrasound-guided intermediate cervical plexus block is a safe and effective method for providing perioperative analgesia during thyroid surgery.

Keywords: thyroidectomy, cervical plexus block, pain relief, opioid consumption

Procedia PDF Downloads 92
862 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 428
861 The Development of the Spatial and Hierarchic Urban Structure of the Ultra-Orthodox Jewish Population in Israel

Authors: Lee Cahaner, Nissim Leon

Abstract:

The segregation of populations is one of the main axes in the research of urban geography, which refers to the spatial and functional relationships between settlements. In Israel, this phenomenon has its unique expression in the spatial processes concerning the ultra-orthodox population. This population holds a set of interactions within itself as well as with the non-orthodox surrounding population because of historical and contemporary motivations on its which strength depends on its homogeneousness and separation. Its demographic growth rate and the internal social processes that the ultra-orthodox society undergoes create a new image of the ultra-orthodox concentration and its location in the Israeli space. The goals of the present study have also been defined with the express intention of filling the scholarly vacuum noted above: firstly, to discuss the development of the Israeli ultra-Orthodox sector’s hierarchical and spatial structure as of 2015, in light of the principles and mechanisms that guide it and vis-à-vis the general population’s hierarchical locality system; secondly, to map Israel’s ultra-Orthodox population, with attention to its physical boundaries, its subdivisions (Hassidic, Lithuanian, Sephardic) and the geographical and demographic processes that have characterized it in recent years; and thirdly, to shed light on the interactions between ultra-Orthodox localities via several different parameters, e.g. migration, education, transportation, employment, consumerism and community services. In order to understand the changes in ultra-Orthodox geographic distribution and the social processes that these changes have generated, a number of research activities were conducted during the course of this study− notably, gathering and assembling material from earlier academic studies, newspaper advertisements, state and private archives; in-depth interviews with major figures in the ultra-Orthodox community and others who come into contact with it; tours of the core areas of ultra-Orthodox settlement; and gathering quantitative and qualitative data from the statistical reports of governmental and other bodies. In addition, a multi-participant (2400-respondent) quantitative survey was conducted among residents of the new ultra-Orthodox cities, designed to elucidate the attributes and spatial attitudes of the residents− as a means of tracing and understanding this new settlement pattern within ultra-Orthodox space. A major portion of the quantitative and qualitative material was processed to form a system of maps that visually describe the distribution of Israel’s ultra-Orthodox population.

Keywords: migration, new cities, segregation, ultra-orthodox

Procedia PDF Downloads 396
860 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 102
859 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 133
858 SNP g.1007A>G within the Porcine DNAL4 Gene Affects Sperm Motility Traits

Authors: I. Wiedemann, A. R. Sharifi, A. Mählmeyer, C. Knorr

Abstract:

A requirement for sperm motility is a morphologically intact flagellum with a central axoneme. The flagellar beating is caused by the varying activation and inactivation of dynein molecules which are located in the axoneme. DNAL4 (dynein, axonemal, light chain 4) is regarded as a possible functional candidate gene encoding a small subunit of the dyneins. In the present study, 5814bp of the porcine DNAL4 (GenBank Acc. No. AM284696.1, 6097 bp, 4 exons) were comparatively sequenced using three boars with a high motility (>68%) and three with a low motility (<60%). Primers were self-designed except for those covering exons 1, 2 and 3. Prior to sequencing, the PCR products were purified. Sequencing was performed with an ABI PRISM 3100 Genetic Analyzer using the BigDyeTM Terminator v3.1 Cycle Sequencing Reaction Kit. Finally, 23 SNPs were described and genotyped for 82 AI boars representing the breeds Piétrain, German Large White and German Landrace. The genotypes were used to assess possible associations with standard spermatological parameters (ejaculate volume, density, and sperm motility (undiluted (Motud), 24h (Mot1) and 48h (Mot2) after semen collection) that were regularly recorded on the AI station. The analysis included a total of 8,833 spermatological data sets which ranged from 2 to 295 sets per boar in five years. Only SNP g.1007A>G had a significant effect. Finally, the gene substitution effect using the following statistical model was calculated: Yijk= µ+αi+βj+αβij+b1Sijk+b2Aijk+b3T ijk + b4Vijk+b5(α*A)ijk +b6(β*A)ijk+b7(A*T)ijk+Uijk+eijk where Yijk is the semen characteristics, µ is the general mean, α is the main effect of breed, β is the main effect of season, S is the effect of SNP (g.1007A > G), A is the effect of age at semen collection, V is the effect of diluter, αβ, α*A, β*A, A*T are interactions between the fixed effects, b1-b7 are regression coefficients between y and the respective covariate, U is the random effect of repeated observation on animal and e is the random error. The results from the single marker regression analysis revealed highly significant effects (p < 0.0001) of SNP g.1007A > G on Mot1 resp. on Mot2, resulting in a marked reduction by 11.4% resp. 15.4%. Furthermore a loss of Motud by 4.6% was detected (p < 0.0178). Considering the SNP g.1007A > G as a main factor (dominant-recessive model), significant differences between genotypes AA and AG as well as AA and GG for Mot1 and Mot2 exist. For Motud there was a significant difference between AA and GG.

Keywords: association, DNAL4, porcine, sperm traits

Procedia PDF Downloads 450
857 Managing the Blue Economy and Responding to the Environmental Dimensions of a Transnational Governance Challenge

Authors: Ivy Chen XQ

Abstract:

This research places a much-needed focus on the conservation of the Blue Economy (BE) by focusing on the design and development of monitoring systems to track critical indicators on the status of the BE. In this process, local experiences provide an insight into important community issues, as well as the necessity to cooperate and collaborate in order to achieve sustainable options. Researchers worldwide and industry initiatives over the last decade show that the exploitation of marine resources has resulted in a significant decrease in the share of total allowable catch (TAC). The result has been strengthening law enforcement, yet the results have shown that problems were related to poor policies, a lack of understanding of over-exploitation, biological uncertainty and political pressures. This reality and other statistics that show a significant negative impact on the attainment of the Sustainable Development Goals (SDGs), warrant an emphasis on the development of national M&E systems, in order to provide evidence-based information, on the nature and scale of especially transnational fisheries crime and under-sea marine resources in the BE. In particular, a need exists to establish a compendium of relevant BE indicators to assess such impact against the SDGs by using selected SDG indicators for this purpose. The research methodology consists of ATLAS.ti qualitative approach and a case study will be developed of Illegal, unregulated and unreported (IUU) poaching and Illegal Wildlife Trade (IWT) as component of the BE as it relates to the case of abalone in southern Africa and Far East. This research project will make an original contribution through the analysis and comparative assessment of available indicators, in the design process of M&E systems and developing indicators and monitoring frameworks in order to track critical trends and tendencies on the status of the BE, to ensure specific objectives to be aligned with the indicators of the SDGs framework. The research will provide a set of recommendations to governments and stakeholders involved in such projects on lessons learned, as well as priorities for future research. The research findings will enable scholars, civil society institutions, donors and public servants, to understand the capability of the M&E systems, the importance of showing multi-level governance, in the coordination of information management, together with knowledge management (KM) and M&E at the international, regional, national and local levels. This coordination should focus on a sustainable development management approach, based on addressing socio-economic challenges to the potential and sustainability of BE, with an emphasis on ecosystem resilience, social equity and resource efficiency. This research and study focus are timely as the opportunities of the post-Covid-19 crisis recovery package will be grasped to set the economy on a path to sustainable development in line with the UN 2030 Agenda. The pandemic raises more awareness for the world to eliminate IUU poaching and illegal wildlife trade (IWT).

Keywords: Blue Economy (BE), transnational governance, Monitoring and Evaluation (M&E), Sustainable Development Goals (SDGs).

Procedia PDF Downloads 169
856 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 108
855 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 346
854 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 171
853 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 97
852 Comparison of Nutritional Status of Asthmatic vs Non-asthmatic Adults

Authors: Ayesha Mushtaq

Abstract:

Asthma is a pulmonary disease in which blockade of the airway takes place due to inflammation as a response to certain allergens. Breathing troubles, cough, and dyspnea are one of the few symptoms. Several studies have indicated a significant effect on asthma due to changes in dietary routines. Certain food items, such as oily foods and other materials, are known to cause an increase in the symptoms of asthma. Low dietary intake of fruits and vegetables may be important in relation to asthma prevalence. The objective of this study is to assess and compare the nutritional status of asthmatic and non-asthmatic patients. The significance of this study lies in the factor that it will help nutritionists to arrange a feasible dietary routine for asthmatic patients. This research was conducted at the Pulmonology Department of the Pakistan Institute of Medical Science Islamabad. About thirty hundred thirty-four million people are affected by asthma worldwide. Pakistan is on the verge of being an uplifted urban population and asthma cases are increasingly high these days. Several studies suggest an increase in the Asthmatic patient population due to improper diet. Other studies conducted at different institutions have conducted research on similar topics. These studies have suggested that there is a substantial alteration in the nutritional status of asthmatic and non-Asthmatic patients. This is a cross-sectional study aimed at assessing the nutritious standing of Asthmatic and non-asthmatic patients. This research took place at the Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. The research included asthmatic and non-asthmatic patients coming to the pulmonology department clinic at the Pakistan Institute of Medical Sciences (PIMS). These patients were aged between 20-60 years. A questionnaire was developed for these patients to estimate their dietary plans in these patients. The methodology included four sections. The first section was the Socio-Demographic profile, which included age, gender, monthly income and occupation. The next section was anthropometric measurements which included the weight, height and body mass index (BMI) of the individual. The next section, section three, was about the biochemical attributes, such as for biochemical profiling, pulmonary function testing (PFT) was performed. In the next section, Dietary habits, which were assessed by using a food frequency questionnaire (FFQ) through food habits and consumption pattern, was assessed. The next section life style data, in which the person's level of physical activity, sleep and smoking habits were assessed. The next section was statistical analysis. All the data obtained from the study were statistically analyzed and assessed. Most of the asthma Patients were females, with weight more than normal or even obese. Body Mass Index (BMI) was higher in asthma Patients than those in non-Asthmatic ones. When the nutritional Values were assessed, we came to know that these patients were low on certain nutrients and their diet included more junk and oily food than healthy vegetables and fruits. Beverages intake was also included in the same assessment. It is evident from this study that nutritional status has a contributory effect on asthma. So, patients on the verge of developing asthma or those who have developed asthma should focus on their diet, maintain good eating habits and take healthy diets, including fruits and vegetables rather than oily foods. Proper sleep may also contribute to the control of asthma.

Keywords: NUTRI, BMI, asthma, food

Procedia PDF Downloads 65
851 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 189
850 A Cooperative, Autonomous, and Continuously Operating Drone System Offered to Railway and Bridge Industry: The Business Model Behind

Authors: Paolo Guzzini, Emad Samuel M. Ebeid

Abstract:

Bridges and Railways are critical infrastructures. Ensuring safety for transports using such assets is a primary goal as it directly impacts the lives of people. By the way, improving safety could require increased investments in O&M, and therefore optimizing resource usage for asset maintenance becomes crucial. Drones4Safety (D4S), a European project funded under the H2020 Research and Innovation Action (RIA) program, aims to increase the safety of the European civil transport by building a system that relies on 3 main pillars: • Drones operating autonomously in swarm mode; • Drones able to recharge themselves using inductive phenomena produced by transmission lines in the nearby of bridges and railways assets to be inspected; • Data acquired that are analyzed with AI-empowered algorithms for defect detection This paper describes the business model behind this disruptive project. The Business Model is structured in 2 parts: • The first part is focused on the design of the business model Canvas, to explain the value provided by the Drone4safety project; • The second part aims at defining a detailed financial analysis, with the target of calculating the IRR (Internal Return rate) and the NPV (Net Present Value) of the investment in a 7 years plan (2 years to run the project + 5 years post-implementation). As to the financial analysis 2 different points of view are assumed: • Point of view of the Drones4safety company in charge of designing, producing, and selling the new system; • Point of view of the Utility company that will adopt the new system in its O&M practices; Assuming the point of view of the Drones4safety company 3 scenarios were considered: • Selling the drones > revenues will be produced by the drones’ sales; • Renting the drones > revenues will be produced by the rental of the drones (with a time-based model); • Selling the data acquisition service > revenues will be produced by the sales of pictures acquired by drones; Assuming the point of view of a utility adopting the D4S system, a 4th scenario was analyzed taking into account the decremental costs related to the change of operation and maintenance practices. The paper will show, for both companies, what are the key parameters affecting most of the business model and which are the sustainable scenarios.

Keywords: a swarm of drones, AI, bridges, railways, drones4safety company, utility companies

Procedia PDF Downloads 135
849 A Flipped Learning Experience in an Introductory Course of Information and Communication Technology in Two Bachelor's Degrees: Combining the Best of Online and Face-to-Face Teaching

Authors: Begona del Pino, Beatriz Prieto, Alberto Prieto

Abstract:

Two opposite approaches to teaching can be considered: in-class learning (teacher-oriented) versus virtual learning (student-oriented). The most known example of the latter is Massive Online Open Courses (MOOCs). Both methodologies have pros and cons. Nowadays there is an increasing trend towards combining both of them. Blending learning is considered a valuable tool for improving learning since it combines student-centred interactive e-learning and face to face instruction. The aim of this contribution is to exchange and share the experience and research results of a blended-learning project that took place in the University of Granada (Spain). The research objective was to prove how combining didactic resources of a MOOC with in-class teaching, interacting directly with students, can substantially improve academic results, as well as student acceptance. The proposed methodology is based on the use of flipped learning technics applied to the subject ‘Fundamentals of Computer Science’ of the first course of two degrees: Telecommunications Engineering, and Industrial Electronics. In this proposal, students acquire the theoretical knowledges at home through a MOOC platform, where they watch video-lectures, do self-evaluation tests, and use other academic multimedia online resources. Afterwards, they have to attend to in-class teaching where they do other activities in order to interact with teachers and the rest of students (discussing of the videos, solving of doubts and practical exercises, etc.), trying to overcome the disadvantages of self-regulated learning. The results are obtained through the grades of the students and their assessment of the blended experience, based on an opinion survey conducted at the end of the course. The major findings of the study are the following: The percentage of students passing the subject has grown from 53% (average from 2011 to 2014 using traditional learning methodology) to 76% (average from 2015 to 2018 using blended methodology). The average grade has improved from 5.20±1.99 to 6.38±1.66. The results of the opinion survey indicate that most students preferred blended methodology to traditional approaches, and positively valued both courses. In fact, 69% of students felt ‘quite’ or ‘very’ satisfied with the classroom activities; 65% of students preferred the flipped classroom methodology to traditional in-class lectures, and finally, 79% said they were ‘quite’ or ‘very’ satisfied with the course in general. The main conclusions of the experience are the improvement in academic results, as well as the highly satisfactory assessments obtained in the opinion surveys. The results confirm the huge potential of combining MOOCs in formal undergraduate studies with on-campus learning activities. Nevertheless, the results in terms of students’ participation and follow-up have a wide margin for improvement. The method is highly demanding for both students and teachers. As a recommendation, students must perform the assigned tasks with perseverance, every week, in order to take advantage of the face-to-face classes. This perseverance is precisely what needs to be promoted among students because it clearly brings about an improvement in learning.

Keywords: blended learning, educational paradigm, flipped classroom, flipped learning technologies, lessons learned, massive online open course, MOOC, teacher roles through technology

Procedia PDF Downloads 177
848 Indirect Genotoxicity of Diesel Engine Emission: An in vivo Study Under Controlled Conditions

Authors: Y. Landkocz, P. Gosset, A. Héliot, C. Corbière, C. Vendeville, V. Keravec, S. Billet, A. Verdin, C. Monteil, D. Préterre, J-P. Morin, F. Sichel, T. Douki, P. J. Martin

Abstract:

Air Pollution produced by automobile traffic is one of the main sources of pollutants in urban atmosphere and is largely due to exhausts of the diesel engine powered vehicles. The International Agency for Research on Cancer, which is part of the World Health Organization, classified in 2012 diesel engine exhaust as carcinogenic to humans (Group 1), based on sufficient evidence that exposure is associated with an increased risk for lung cancer. Amongst the strategies aimed at limiting exhausts in order to take into consideration the health impact of automobile pollution, filtration of the emissions and use of biofuels are developed, but their toxicological impact is largely unknown. Diesel exhausts are indeed complex mixtures of toxic substances difficult to study from a toxicological point of view, due to both the necessary characterization of the pollutants, sampling difficulties, potential synergy between the compounds and the wide variety of biological effects. Here, we studied the potential indirect genotoxicity of emission of Diesel engines through on-line exposure of rats in inhalation chambers to a subchronic high but realistic dose. Following exposure to standard gasoil +/- rapeseed methyl ester either upstream or downstream of a particle filter or control treatment, rats have been sacrificed and their lungs collected. The following indirect genotoxic parameters have been measured: (i) telomerase activity and telomeres length associated with rTERT and rTERC gene expression by RT-qPCR on frozen lungs, (ii) γH2AX quantification, representing double-strand DNA breaks, by immunohistochemistry on formalin fixed-paraffin embedded (FFPE) lung samples. These preliminary results will be then associated with global cellular response analyzed by pan-genomic microarrays, monitoring of oxidative stress and the quantification of primary DNA lesions in order to identify biological markers associated with a potential pro-carcinogenic response of diesel or biodiesel, with or without filters, in a relevant system of in vivo exposition.

Keywords: diesel exhaust exposed rats, γH2AX, indirect genotoxicity, lung carcinogenicity, telomerase activity, telomeres length

Procedia PDF Downloads 387
847 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 223
846 Office Workspace Design for Policewomen in Assam, India: Applications for Developing Countries

Authors: Shilpi Bora, Abhirup Chatterjee, Debkumar Chakrabarti

Abstract:

Organizations of all the sectors around the world are increasingly revisiting their workplace strategies with due concern for women working therein. Limited office space and rigid work arrangements contribute to lesser job satisfaction and greater work impoundments for any organization. Flexible workspace strategies are indispensable to accommodate the progressive rise of modular workstations and involvement of women. Today’s generation of employees deserves malleable office environments with employee-friendly job conditions and strategies. The workplace nowadays stands on rapid organizational changes in progressive and flexible work culture. Occupational well-being practices need to keep pace with the rapid changes in office-based work. Working at the office (workspace) with awkward postures or for long periods can cause pain, discomfort, and injury. The world is stirring towards the era of globalization and progress. The 4000 women police personnel constitute less than one per cent of the total police strength of India. Lots of innovative fields are growing fast, and it is important that we should accommodate women in those arenas. The timeworn trends should be set apart to set out for fresh opportunities and possibilities of development and success through more involvement of women in the workplace. The notion of women policing is gaining position throughout the world, and various countries are putting solemn efforts to mainstream women in policing. As the role of women policing in a society is budding, and thus it is also notable that the accessibility of women at general police stations should be considered. Accordingly, the impact of workspace at police station on the employee productivity has been widely deliberated as a crucial contributor to employee satisfaction leading to better functional motivation. Thus the present research aimed to look into the office workstation design of police station with reference to womanhood specific issues to uplift occupational wellbeing of the policewomen. Personal interview and individual responses collected through administering to a subjective assessment questionnaire on thirty women police as well as to have their views on these issues by purposive non-probability sampling of women police personnel of different ranks posted in Guwahati, Assam, India. Scrutiny of the collected data revealed that office design has a substantial impact on the policewomen job satisfaction in the police station. In this study, the workspace was designed in such a way that the set of factors would impact on the individual to ensure increased productivity. Office design such as furniture, noise, temperature, lighting and spatial arrangement were considered. The primary feature which affected the productivity of policewomen was the furniture used in the workspace, which was found to disturb the everyday and overall productivity of policewomen. Therefore, it was recommended to have proper and adequate ergonomics design intervention to improve the office design for better performance. This type of study is today’s need-of-the-hour to empower women and facilitate their inner talent to come up in service of the nation. The office workspace design also finds critical importance at several other occupations also – where office workstation needs further improvement.

Keywords: office workspace design, policewomen, womanhood concerns at workspace, occupational wellbeing

Procedia PDF Downloads 222
845 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 90
844 The Social Aspects of Mental Illness among Orthodox Christians of the Tigrinya Ethnic Group in Eritrea

Authors: Erimias Firre

Abstract:

This study is situated within the religio-cultural milieu of Coptic Orthodox Christians of the Tigrinya ethnic group in Eritrea. With this ethnic group being conservative and traditionally bound, extended family structures dissected along various clans and expansive community networks are the distinguishing mark of its members. Notably, Coptic Tigrinya constitutes the largest percentage of all Christian denominations in Eritrea. As religious, cultural beliefs, rituals and teachings permeate in all aspects of social life, a distinct worldview and traditionalized health and illness conceptualization are common. Accordingly, this study argues that religio-culturally bound illness ideologies immensely determine the perception, help seeking behavior and healing preference of Coptic Tigrinya in Eritrea. The study bears significance in the sense that it bridges an important knowledge gap, given that it is ethno-linguistically (within the Tigrinya ethnic group), spatially (central region of Eritrea) and religiously (Coptic Christianity) specific. The conceptual framework guiding this research centered on the social determinants of mental health, and explores through the lens of critical theory how existing systems generate social vulnerability and structural inequality, providing a platform to reveal how the psychosocial model has the capacity to emancipate and empower those with mental disorders to live productive and meaningful lives. A case study approach was employed to explore the interrelationship between religio-cultural beliefs and practices and perception of common mental disorders of depression, anxiety, bipolar affective, schizophrenia and post-traumatic stress disorders and the impact of these perceptions on people with those mental disorders. Purposive sampling was used to recruit 41 participants representing seven diverse cohorts; people with common mental disorders, family caregivers, general community members, ex-fighters , priests, staff at St. Mary’s and Biet-Mekae Community Health Center; resulting in rich data for thematic analysis. Findings highlighted current religio-cultural perceptions, causes and treatment of mental disorders among Coptic Tigrinya result in widespread labelling, stigma and discrimination, both of those with mental disorders and their families. Traditional healing sources are almost exclusively tried, sometimes for many years, before families and sufferers seek formal medical assessment and treatment, resulting difficult to treat illness chronicity. Service gaps in the formal medical system result in the inability to meet the principles enshrined in the WHO Mental Health Action Plan 2013-2020 to which the Eritrean Government is a signatory. However, the study found that across all participant cohorts, there was a desire for change that will create a culture whereby those with mental disorders will have restored hope, connectedness, healing and self-determination.

Keywords: Coptic Tigrinya, mental disorders, psychosocial model social integration and recovery, traditional healing

Procedia PDF Downloads 182
843 Evaluation: Developing An Appropriate Survey Instrument For E-Learning

Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King

Abstract:

A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.

Keywords: evaluation, online courses, student survey, teaching effectiveness

Procedia PDF Downloads 260
842 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 148
841 Participatory Monitoring Strategy to Address Stakeholder Engagement Impact in Co-creation of NBS Related Project: The OPERANDUM Case

Authors: Teresa Carlone, Matteo Mannocchi

Abstract:

In the last decade, a growing number of International Organizations are pushing toward green solutions for adaptation to climate change. This is particularly true in the field of Disaster Risk Reduction (DRR) and land planning, where Nature-Based Solutions (NBS) had been sponsored through funding programs and planning tools. Stakeholder engagement and co-creation of NBS is growing as a practice and research field in environmental projects, fostering the consolidation of a multidisciplinary socio-ecological approach in addressing hydro-meteorological risk. Even thou research and financial interests are constantly spread, the NBS mainstreaming process is still at an early stage as innovative concepts and practices make it difficult to be fully accepted and adopted by a multitude of different actors to produce wide scale societal change. The monitoring and impact evaluation of stakeholders’ participation in these processes represent a crucial aspect and should be seen as a continuous and integral element of the co-creation approach. However, setting up a fit for purpose-monitoring strategy for different contexts is not an easy task, and multiple challenges emerge. In this scenario, the Horizon 2020 OPERANDUM project, designed to address the major hydro-meteorological risks that negatively affect European rural and natural territories through the co-design, co-deployment, and assessment of Nature-based Solution, represents a valid case study to test a monitoring strategy from which set a broader, general and scalable monitoring framework. Applying a participative monitoring methodology, based on selected indicators list that combines quantitative and qualitative data developed within the activity of the project, the paper proposes an experimental in-depth analysis of the stakeholder engagement impact in the co-creation process of NBS. The main focus will be to spot and analyze which factors increase knowledge, social acceptance, and mainstreaming of NBS, promoting also a base-experience guideline to could be integrated with the stakeholder engagement strategy in current and future similar strongly collaborative approach-based environmental projects, such as OPERANDUM. Measurement will be carried out through survey submitted at a different timescale to the same sample (stakeholder: policy makers, business, researchers, interest groups). Changes will be recorded and analyzed through focus groups in order to highlight causal explanation and to assess the proposed list of indicators to steer the conduction of similar activities in other projects and/or contexts. The idea of the paper is to contribute to the construction of a more structured and shared corpus of indicators that can support the evaluation of the activities of involvement and participation of various levels of stakeholders in the co-production, planning, and implementation of NBS to address climate change challenges.

Keywords: co-creation and collaborative planning, monitoring, nature-based solution, participation & inclusion, stakeholder engagement

Procedia PDF Downloads 106
840 The Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.

Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials

Procedia PDF Downloads 64
839 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 330
838 E-Waste Generation in Bangladesh: Present and Future Estimation by Material Flow Analysis Method

Authors: Rowshan Mamtaz, Shuvo Ahmed, Imran Noor, Sumaiya Rahman, Prithvi Shams, Fahmida Gulshan

Abstract:

Last few decades have witnessed a phenomenal rise in the use of electrical and electronic equipment globally in our everyday life. As these items reach the end of their lifecycle, they turn into e-wastes and contribute to the waste stream. Bangladesh, in conformity with the global trend and due to its ongoing rapid growth, is also using electronics-based appliances and equipment at an increasing rate. This has caused a corresponding increase in the generation of e-wastes. Bangladesh is a developing country; its overall waste management system, is not yet efficient, nor is it environmentally sustainable. Most of its solid wastes are disposed of in a crude way at dumping sites. Addition of e-wastes, which often contain toxic heavy metals, into its waste stream has made the situation more difficult and challenging. Assessment of generation of e-wastes is an important step towards addressing the challenges posed by e-wastes, setting targets, and identifying the best practices for their management. Understanding and proper management of e-wastes is a stated item of the Sustainable Development Goals (SDG) campaign, and Bangladesh is committed to fulfilling it. A better understanding and availability of reliable baseline data on e-wastes will help in preventing illegal dumping, promote recycling, and create jobs in the recycling sectors and thus facilitate sustainable e-waste management. With this objective in mind, the present study has attempted to estimate the amount of e-wastes and its future generation trend in Bangladesh. To achieve this, sales data on eight selected electrical and electronic products (TV, Refrigerator, Fan, Mobile phone, Computer, IT equipment, CFL (Compact Fluorescent Lamp) bulbs, and Air Conditioner) have been collected from different sources. Primary and secondary data on the collection, recycling, and disposal of the e-wastes have also been gathered by questionnaire survey, field visits, interviews, and formal and informal meetings with the stakeholders. Material Flow Analysis (MFA) method has been applied, and mathematical models have been developed in the present study to estimate e-waste amounts and their future trends up to the year 2035 for the eight selected electrical and electronic equipment. End of life (EOL) method is adopted in the estimation. Model inputs are products’ annual sale/import data, past and future sales data, and average life span. From the model outputs, it is estimated that the generation of e-wastes in Bangladesh in 2018 is 0.40 million tons and by 2035 the amount will be 4.62 million tons with an average annual growth rate of 20%. Among the eight selected products, the number of e-wastes generated from seven products are increasing whereas only one product, CFL bulb, showed a decreasing trend of waste generation. The average growth rate of e-waste from TV sets is the highest (28%) while those from Fans and IT equipment are the lowest (11%). Field surveys conducted in the e-waste recycling sector also revealed that every year around 0.0133 million tons of e-wastes enter into the recycling business in Bangladesh which may increase in the near future.

Keywords: Bangladesh, end of life, e-waste, material flow analysis

Procedia PDF Downloads 187
837 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow

Authors: Alex Fedoseyev

Abstract:

This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.

Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow

Procedia PDF Downloads 56