Search results for: steel constructions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1961

Search results for: steel constructions

401 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating

Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang

Abstract:

The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.

Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying

Procedia PDF Downloads 261
400 The Behaviour of Laterally Loaded Piles Installed in the Sand with Enlarged Bases

Authors: J. Omer, H. Haroglu

Abstract:

Base enlargement in piles was invented to enhance pile resistance in downward loading, but the contribution of an enlarged base to the lateral load resistance of a pile has not been fully exploited or understood. This paper presents a laboratory investigation of the lateral capacity and deformation response of small-scale steel piles with enlarged bases installed in dry sand. Static loading tests were performed on 24 model piles having different base-to-shaft diameter ratios. The piles were installed in a box filled with dry sand, and lateral loads were applied to the pile tops using a pulley system. The test piles had shaft diameters of 20 mm, 16 mm, and 10 mm; base diameters of 900 mm, 700 mm, and 500 mm. As a control, a pile without base enlargement was tested to allow comparisons with the enlarged base piles. Incremental maintained loads were applied until pile failure approached while recording pile head deflections with high-precision dial gauges. The results showed that the lateral capacity increased with an increase in base diameter, albeit by different percentages depending on the shaft diameters and embedment length in the sand. There was always an increase in lateral capacity with increasing embedment length. Also, it was observed that an enlarged pile base had deflected less at a given load when compared to the control pile. Therefore, the research demonstrated the benefits of lateral capacity and stability of enlarging a pile base.

Keywords: pile foundations, enlarged base, lateral loading

Procedia PDF Downloads 132
399 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein

Authors: Nasser A. Al-Shabib

Abstract:

Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.

Keywords: ovomucoid, thermal treatment, solutions, surfaces

Procedia PDF Downloads 441
398 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City

Authors: Abdurahman Anwar Shfa

Abstract:

Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.

Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis

Procedia PDF Downloads 12
397 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 248
396 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: circularity, diameter error, drilling canned cycle, pareto ANOVA, surface roughness

Procedia PDF Downloads 278
395 Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System

Authors: Zbigniew Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces.

Keywords: arc furnaces, long-term flicker, measurement and modeling of power quality, voltage fluctuations

Procedia PDF Downloads 280
394 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 405
393 Characterization of Himalayan Phyllite with Reference to Foliation Planes

Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar

Abstract:

Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.

Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region

Procedia PDF Downloads 51
392 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing

Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee

Abstract:

AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.

Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase

Procedia PDF Downloads 91
391 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption

Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu

Abstract:

By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.

Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture

Procedia PDF Downloads 362
390 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment

Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika

Abstract:

On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.

Keywords: differential settlement, embankment, influence area, slope, soft soil

Procedia PDF Downloads 399
389 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 260
388 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 170
387 Results and Insights from a Developmental Psychology Study on the Presentation of Juvenility in Punk Fanzines

Authors: Marc Dietrich

Abstract:

Youth cultures like Punk as much as media relevant to the specific scenes associated with them offer ample opportunity for young people or juvenile adults to construct their personal identities. However, developmental psychology has largely neglected such identity construction processes during the last decades. Such was not always the case: Early developmental psychologists intensely studied youth cultures and their meaningful objects and media in the early 20th century but lost interest when cultural studies and the social sciences occupied the field after World War II. Our project Constructions of Juvenility and Generation(ality), funded by the German Federal Ministry for Education and Research, reintegrates the study of youth cultures and their meaningful objects and media in a developmental psychology perspective. We present an empirical study of the ways in which youth, juvenility, and generation (ality) are constructed and negotiated in underground media like punk fanzines (a portmanteau of fan and magazine), including both semantic and aesthetic aspects of these construction processes within punk culture. The fanzine sample was accessed by the theoretical sampling strategy typical for GTM studies. Acknowledging fanzines as artful self-produced media by scene members for scene members, we conceptualize them as authentic documents of scene norms and values. Drawing on an analysis of both text and (cover) images in Punk fanzines published in Germany (and within a sample dating from 1981 until 2015) using a novel Visual Grounded Theory approach, we found that: a) Juvenility is a highly contested concept in punk culture. Its semantic quality and valuation varies with the perspectives present within the culture (e.g. embryo punks versus older punks); b) Juvenility is constructed as having energy and being socio-critical that does not depend on biological age; c) Juvenility is regarded not an ideal per se in German Punk culture; Punk culture constructs old age in a largely positive way (e.g., as marker of being real and a historical innovator); d) Juvenility is constructed as a habit that should be kept for life as it is constantly adapted to individual biographical trajectories like specific job situations or having a family. Consequently, identity negotiation as documented in the zines attempts to balance subculturally driven perspectives on life and society with the pragmatic requirements of a bourgeois life. The proposed paper will present the main results of this large-scale study of punk fanzines and show how developmental psychology perspectives as represented in the novel methodology applied in it can advance the study of youth cultures.

Keywords: construction of juvenility, developmental psychology, visual GTM, youth culture, fanzines

Procedia PDF Downloads 285
386 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 380
385 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos

Authors: Hatthaphone Silimanotham, Michael Henry

Abstract:

The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.

Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling

Procedia PDF Downloads 151
384 The Impact of Housing Design on the Health and Well-Being of Populations: A Case-Study of Middle-Class Families in the Metropolitan Region of Port-Au-Prince, Haiti

Authors: A. L. Verret, N. Prince, Y. Jerome, A. Bras

Abstract:

The effects of housing design on the health and well-being of populations are quite intangible. In fact, healthy housing parameters are generally difficult to establish scientifically. It is often unclear the direction of a cause-and-effect relationship between health variables and housing. However, the lack of clear and definite measurements does not entail the absence of relationship between housing, health, and well-being. Research has thus been conducted. It has mostly aimed the physical rather than the psychological or social well-being of a population, given the difficulties to establish cause-effect relationships because of the subjectivity of the psychological symptoms and of the challenge in determining the influence of other factors. That said, a strong relationship has been exposed between light and physiology. Both the nervous and endocrine systems, amongst others, are affected by different wavelengths of natural light within a building. Daylight in the workplace is indeed associated to decreased absenteeism, errors and product defects, fatigue, eyestrain, increased productivity and positive attitude. Similar associations can also be made to residential housing. Lower levels of sunlight within the home have been proven to result in impaired cognition in depressed participants of a cross-sectional case study. Moreover, minimum space (area and volume) has been linked to healthy housing and quality of life, resulting in norms and regulations for such parameters for home constructions. As a matter of fact, it is estimated that people spend the two-thirds of their lives within the home and its immediate environment. Therefore, it is possible to deduct that the health and well-being of the occupants are potentially at risk in an unhealthy housing situation. While the impact of architecture on health and well-being is acknowledged and considered somewhat crucial in various countries of the north and the south, this issue is barely raised in Haiti. In fact, little importance is given to architecture for many reasons (lack of information, lack of means, societal reflex, poverty…). However, the middle-class is known for its residential strategies and trajectories in search of better-quality homes and environments. For this reason, it would be pertinent to use this group and its strategies and trajectories to isolate the impact of housing design on the overall health and well-being. This research aims to analyze the impact of housing architecture on the health and well-being of middle-class families in the metropolitan region of Port-au-Prince. It is a case study which uses semi-structured interviews and observations as research methods. Although at an early stage, this research anticipates that homes affect their occupants both psychologically and physiologically, and consequently, public policies and the population should take into account the architectural design in the planning and construction of housing and, furthermore, cities.

Keywords: architectural design, health and well-being, middle-class housing, Port-au-Prince, Haiti

Procedia PDF Downloads 130
383 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test

Procedia PDF Downloads 163
382 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 248
381 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube

Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük

Abstract:

In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.

Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method

Procedia PDF Downloads 449
380 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 113
379 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 304
378 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 273
377 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 197
376 Keying Effect During Fracture of Stainless Steel

Authors: Farej Ahmed Emhmmed

Abstract:

Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.

Keywords: stainless steels, fracture toughness, crack keying effect, ligaments

Procedia PDF Downloads 352
375 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 239
374 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 115
373 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength

Procedia PDF Downloads 502
372 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 81