Search results for: predictive equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2838

Search results for: predictive equations

1278 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 337
1277 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 573
1276 Transfer of Business Anti-Corruption Norms in Developing Countries: A Case Study of Vietnam

Authors: Candice Lemaitre

Abstract:

During the 1990s, an alliance of international intergovernmental and non-governmental organizations proposed a set of regulatory norms designed to reduce corruption. Many governments in developing countries, such as Vietnam, enacted these global anti-corruption norms into their domestic law. This article draws on empirical research to understand why these anti-corruption norms have failed to reduce corruption in Vietnam and many other developing countries. Rather than investigating state compliance with global anti-corruption provisions, a topic that has already attracted considerable attention, this article aims to explore the comparatively under-researched area of business compliance. Based on data collected from semi-structured interviews with business managers in Vietnam and archival research, this article examines how businesses in Vietnam interpret and comply with global anti-corruption norms. It investigates why different types of companies in Vietnam engage with and respond to these norms in different ways. This article suggests that global anti-corruption norms have not been effective in reducing corruption in Vietnam because there is fragmentation in the way companies in Vietnam interpret and respond to these norms. This fragmentation results from differences in the epistemic (or interpretive) communities that companies draw upon to interpret global anti-corruption norms. This article uses discourse analysis to understand how the communities interpret global anti-corruption norms. This investigation aims to generate some predictive insights into how companies are likely to respond to anti-corruption regimes based on global anti-corruption norms.

Keywords: anti-corruption, business law, legal transfer, Vietnam

Procedia PDF Downloads 159
1275 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 410
1274 Hydrodynamics of Wound Ballistics

Authors: Harpreet Kaur, Er. Arjun, Kirandeep Kaur, P. K. Mittal

Abstract:

Simulation of a human body from a 20% gelatin & 80% water mixture is examined from a wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of the human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to a permanent cavity. This occurs for 10mm size bullets & settles down to a permanent cavity in the case of 4 different bullets, i.e., 5.45, 5.56, 7.62,10 mm sizes. The obtained results are in excellent agreement with the body as a right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer.

Keywords: gelatine, gunshot, hydrodynamic model, oscillation time, temporary and permanent cavity, wound ballistics

Procedia PDF Downloads 76
1273 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 406
1272 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body

Authors: Haoui Rabah

Abstract:

The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: supersonic flow, viscous flow, finite volume, blunt body

Procedia PDF Downloads 606
1271 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: nanofluid, heat transfer, unsteady flow, forced convection, cross-flow

Procedia PDF Downloads 397
1270 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 380
1269 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes

Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar

Abstract:

Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.

Keywords: life time, pregnancy rate, production, service period, standardization

Procedia PDF Downloads 636
1268 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 48
1267 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 126
1266 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 261
1265 Guided Wave in a Cylinder with Trepezoid Cross-Section

Authors: Nan Tang, Bin Wu, Cunfu He

Abstract:

The trapezoid rods are widely used in civil engineering as load –carrying members. Ultrasonic guided wave is one of the most popular techniques in analyzing the propagation of elastic guided wave. The goal of this paper is to investigate the propagation of elastic waves in the isotropic bar with trapezoid cross-section. Dispersion curves that describe the relationship between the frequency and velocity provide the fundamental information to describe the propagation of elastic waves through a structure. Based on the SAFE (semi-analytical finite element) a linear algebraic system of equations is obtained. By using numerical methods, dispersion curves solved for the rods with the trapezoid cross-section. These fundamental information plays an important role in applying ultrasonic guided waves to NTD for structures with trapezoid cross section.

Keywords: guided wave, dispersion, finite element method, trapezoid rod

Procedia PDF Downloads 292
1264 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 105
1263 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 667
1262 Loan Portfolio Quality and the Bank Soundness in the Eccas: An Empirical Evaluation of Cameroonians Banks

Authors: Andre Kadandji, Mouhamadou Fall, Francois Koum Ekalle

Abstract:

This paper aims to analyze the sound banking through the effects of the damage of the loan portfolio in the Cameroonian banking sector through the Z-score. The approach is to test the effect of other CAMEL indicators and macroeconomics indicators on the relationship between the non-performing loan and the soundness of Cameroonian banks. We use a dynamic panel data, made by 13 banks for the period 2010-2013. The analysis provides a model equations embedded in panel data. For the estimation, we use the generalized method of moments to understand the effects of macroeconomic and CAMEL type variables on the ability of Cameroonian banks to face a shock. We find that the management quality and macroeconomic variables neutralize the effects of the non-performing loan on the banks soundness.

Keywords: loan portfolio, sound banking, Z-score, dynamic panel

Procedia PDF Downloads 293
1261 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 287
1260 Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft

Authors: A. Elbatran, Y. Ahmed, A. Radwan, M. Ishak

Abstract:

The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance.

Keywords: drag Coefficient, ground clearance, navier-stokes, WIG

Procedia PDF Downloads 381
1259 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.

Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve

Procedia PDF Downloads 325
1258 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height

Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi

Abstract:

Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.

Keywords: heliostat, solar tower power, wind loads simulation, South Algeria

Procedia PDF Downloads 561
1257 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD

Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil

Abstract:

In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.

Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories

Procedia PDF Downloads 390
1256 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang

Abstract:

The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 210
1255 Heat Transfer Enhancement through Hybrid Metallic Nanofluids Flow with Viscous Dissipation and Joule Heating Effect

Authors: Khawar Ali

Abstract:

We present the numerical study of unsteady hydromagnetic (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting water-based hybrid metallic nanofluid (containing Cu-Au/ H₂O nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effectiveand safe operational conditions.

Keywords: heat transfer enhancement, hybrid metallic nanofluid, viscous dissipation and joule heating effect , Two dimensional flow

Procedia PDF Downloads 229
1254 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
1253 Predictive Value of Primary Tumor Depth for Cervical Lymphadenopathy in Squamous Cell Carcinoma of Buccal Mucosa

Authors: Zohra Salim

Abstract:

Objective: To access the relationship of primary tumor thickness with cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa. Methodology: A cross-sectional observational study was carried out on 80 Patients with biopsy-proven oral squamous cell carcinoma of buccal mucosa at Dow University of Health Sciences. All the study participants were treated with wide local excision of the primary tumor with elective neck dissection. Patients with prior head and neck malignancy or those with prior radiotherapy or chemotherapy were excluded from the study. Data was entered and analyzed on SPSS 21. Chi-squared test with 95% C.I and 80% power of the test was used to evaluate the relationship of tumor depth with cervical lymph nodes. Results: 50 participants were male, and 30 patients were female. 30 patients were in the age range of 20-40 years, 36 patients in the range of 40-60 years, while 14 patients were beyond age 60 years. Tumor size ranged from 0.3cm to 5cm with a mean of 2.03cm. Tumor depth ranged from 0.2cm to 5cm. 20% of the participants reported with tumor depth greater than 2.5cm, while 80% of patients reported with tumor depth less than 2.5cm. Out of 80 patients, 27 reported with negative lymph nodes, while 53 patients reported with positive lymph nodes. Conclusion: Our study concludes that relationship exists between the depth of primary tumor and cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa.

Keywords: squamous cell carcinoma, tumor depth, cervical lymphadenopathy, buccal mucosa

Procedia PDF Downloads 238
1252 Firm Performance and Stock Price in Nigeria

Authors: Tijjani Bashir Musa

Abstract:

The recent global crisis which suddenly results to Nigerian stock market crash revealed some peculiarities of Nigerian firms. Some firms in Nigeria are performing but their stock prices are not increasing while some firms are at the brink of collapse but their stock prices are increasing. Thus, this study examines the relationship between firm performance and stock price in Nigeria. The study covered the period of 2005 to 2009. This period is the period of stock boom and also marked the period of stock market crash as a result of global financial meltdown. The study is a panel study. A total of 140 firms were sampled from 216 firms listed on the Nigerian Stock Exchange (NSE). Data were collected from secondary source. These data were divided into four strata comprising the most performing stock, the least performing stock, most performing firms and the least performing firms. Each stratum contains 35 firms with characteristic of most performing stock, most performing firms, least performing stock and least performing firms. Multiple linear regression models were used to analyse the data while statistical/econometrics package of Stata 11.0 version was used to run the data. The study found that, relationship exists between selected firm performance parameters (operating efficiency, firm profit, earning per share and working capital) and stock price. As such firm performance gave sufficient information or has predictive power on stock prices movements in Nigeria for all the years under study.. The study recommends among others that Managers of firms in Nigeria should formulate policies and exert effort geared towards improving firm performance that will enhance stock prices movements.

Keywords: firm, Nigeria, performance, stock price

Procedia PDF Downloads 478
1251 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 98
1250 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate

Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya

Abstract:

Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.

Keywords: active solar still, desalination, fins, solar collector

Procedia PDF Downloads 221
1249 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 120