Search results for: local raw materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11828

Search results for: local raw materials

10268 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 232
10267 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets

Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang

Abstract:

Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.

Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect

Procedia PDF Downloads 210
10266 Wave Propagation In Functionally Graded Lattice Structures Under Impact Loads

Authors: Mahmood Heshmati, Farhang Daneshmand

Abstract:

Material scientists and engineers have introduced novel materials with complex geometries due to the recent technological advances and promotion of manufacturing methods. Among them, lattice structures with graded architectures denoted by functionally graded porous materials (FGPMs) have been developed to optimize the structural response. FGPMs are achieved by tailoring the size and density of the internal pores in one or more directions that lead to the desired mechanical properties and structural responses. Also, FGPMs provide more flexible transition and the possibility of designing and fabricating structural elements with complex and variable properties. In this paper, wave propagation in lattice structures with functionally graded (FG) porosity is investigated in order to examine the ability of shock absorbing effect. The behavior of FG porous beams with different porosity distributions under impact load and the effects of porosity distribution and porosity content on the wave speed are studied. Important conclusions are made, along with a discussion of the future scope of studies on FGPMs structures.

Keywords: functionally graded, porous materials, wave propagation, impact load, finite element

Procedia PDF Downloads 91
10265 Community Based Disaster Risk Reduction in Mizoram, India

Authors: Lalrokima Chenkual

Abstract:

Legal provision and various guidelines issued by the National Disaster Management Authority in India strives for setting up of disaster management authority from the central government to the district level. Community-Based Disaster Risk Reduction practice is still relevant as the communities are the victim as well as the first responder in any incidents. The primary goal of Community Based Disaster Risk Reduction is to reduce vulnerability of the concerned community and strengthen its existing capacity to cope with disaster. By involving the community in the preparedness phase, it not only increases the likelihood of coordinated action by the communities to help in mitigating disasters and lessening the impact of disaster but also brings the community together to address the issue collectively. Community participation ensures local ownership, addresses local needs, and promotes volunteerism and mutual help to prevent and minimise damage. Community-Based Disaster Risk Reduction is very much relevant for Mizoram as the society is closed knit, population is very less, religion homogeneity i.e Christianity, very active and widespread community-based organization viz, Young Mizo Association, MHIP (Women Federation), MUP (Elders Clubs which are guided together by Mizo code of morals conduct termed as Tlawmngaihna.

Keywords: community, close-knit, first responder, Tlawmngaihna

Procedia PDF Downloads 142
10264 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: Manuel E. Soto-López, Israel Gaxiola-Avendaño, Alfredo Reyes-Salazar, Eden Bojórquez, Sonia E. Ruiz

Abstract:

The seismic responses of steel buildings with semi-rigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to this results, steel buildings with PC are a viable option in highseismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: inter-story drift, nonlinear time-history analysis, post-tensioned connections, steel buildings

Procedia PDF Downloads 499
10263 Students as Global Citizens: Lessons from the International Study Tour

Authors: Ana Hol

Abstract:

Study and work operations are being transformed with the uses of technologies and are consequently becoming global. This paper outlines lessons learned based on the international study tour that Australian Bachelor of Information Systems students undertook. This research identifies that for the study tour to be successful, students need to gain skills that global citizens require. For example, students will need to gain an understanding of local cultures, local customs and habits. Furthermore, students would also need to gain an understanding of how a field of their future career expertise operates in the host country, how study and business are conducted internationally, which tools and technologies are currently being utilized on a global scale, what trends drive future developments world-wide and how business negotiations and collaborations are being undertaken across borders. Furthermore, this research provides a guide to educators who are planning, guiding and running study tours as it outlines the requirements of having a pre-tour preparatory session, carefully planned and executed tour itineraries and post-tour sessions during which students can reflect on their experiences and lessons learned so that they can apply them to future international business visits and ventures.

Keywords: global education, international experiences, international study tours, students as global citizens, student centered education,

Procedia PDF Downloads 233
10262 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 246
10261 Farmers Perception and Awareness to Climate Change in Some Selected Local Government Areas in Jigawa State, Nigeria

Authors: M. M. Ubayo, U. S. Babuga, A. Garba

Abstract:

The study examined the level of climate change awareness and perception by rice farmers in Jigawa State, Nigeria. A multi-stage and purposive sampling technique was used to select respondents. The state is divided into four agricultural zones namely Birninkudu zone, Gumel zone, Hadejia zone, and Kazaure zone. Two agricultural zones (Gumel zone and Hadejia zones) were purposively selected. Six Local Government Areas (LGAs) were randomly selected from the two zones. Also, twenty rice farmers were purposively selected from each of the LGAS. Data were analyzed using frequency and percentages. The result shows that 83.3% of the respondents are aware of the climate change impact on their rice output. Personal experience is the main sources of climate change information in the study area, another 45.6% adopted use of irrigation as the most effective measure to combating climate change, 25.5% use of early maturing variety. Further studies are needed on how to combat the threat and menace of the climate change in the study area.

Keywords: awareness, perception, climate, change, Jigawa

Procedia PDF Downloads 387
10260 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 153
10259 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma

Abstract:

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape

Procedia PDF Downloads 315
10258 Women Mayors and Management of Spanish Councils: An Empirical Analysis

Authors: Carmen Maria Hernandez-Nicolas, Juan Francisco Martín-Ugedo, Antonio Mínguez-Vera

Abstract:

This paper analyses the influence of gender of the mayors of Spanish local governments on different budget items using a sample of 8,243 town councils between 2002 and 2010 period and 64,361 observations. The system Generalized Method of Moments (GMM) technique was employed to examine this panel data. This powerful methodology allows controlling for the endogenity of the variables and the heterogeneity of the sample. Unlike previous works focused on the study of gender influence on firm decisions, the present work analyzes the influence of the gender of the major in the council’s decisions. Specifically, we examine the differences in financial liabilities, security, protection and social promotion expenses and income items relating to public management. In addition, the study focuses on the Spanish context, which is characterized by the presence of decentralization of public responsibility to a greater extent than in neighboring countries, feeding the debate on the operational efficiency of local government increased with an open debate on the importance of gender in public management. The results show that female mayors tend to have lower expenses in general without significant differences in incomes obtained for men and women majors. We also find that female majors incur fewer financial liabilities, one of the most important problems in the Spanish public sector. However, despite of cutting in the public sector, these councils have higher expenditure on security, protection and social promotion. According to these evidences, the presence of women in politics may serve to improve the councils’ economic situation and it is not only necessary for social justice but for economics efficiency. Besides, in councils with more inhabitants, women mayors are more common, but women who served for a very long time are less common.

Keywords: councils, gender, local budgets, public management, women mayors

Procedia PDF Downloads 400
10257 Role of Community Forestry to Address Climate Change in Nepal

Authors: Laxmi Prasad Bhattarai

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: community forestry, climate change, global warming, adaptation, Nepal

Procedia PDF Downloads 305
10256 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 255
10255 Sustainability of Carbon Nanotube-Reinforced Concrete

Authors: Rashad Al Araj, Adil K. Tamimi

Abstract:

Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.

Keywords: sustainability, carbon nano tube, microsilica, concrete

Procedia PDF Downloads 338
10254 Electret: A Solution of Partial Discharge in High Voltage Applications

Authors: Farhina Haque, Chanyeop Park

Abstract:

The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.

Keywords: electrets, high power density, partial discharge, triode corona discharge

Procedia PDF Downloads 203
10253 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 75
10252 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 412
10251 Analysis of Sound Absorption Coefficient

Authors: Zakiul Fuady, Ismail AB, Fauzi, Zulfian

Abstract:

This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same.

Keywords: coefficient of sound absorption, pink noise, white noise, palm

Procedia PDF Downloads 254
10250 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings

Procedia PDF Downloads 478
10249 Nutritional Potential and Traditional Uses of High Altitude Wild Edible Plants in Eastern Himalayas, India

Authors: Hui Tag, Jambey Tsering, Pallabi Kalita Hui, Baikuntha Jyoti Gogoi, Vijay Veer

Abstract:

The food security issues and its relevance in High Mountain regions of the world have been often neglected. Wild edible plants have been playing a major role in livelihood security among the tribal Communities of East Himalayan Region of the world since time immemorial. The Eastern Himalayan Region of India is one of the mega diverse regions of world and rated as top 12th Global Biodiversity Hotspots by IUCN and recognized as one of the 200 significant eco-regions of the Globe. The region supports one of the world’s richest alpine floras and about one-third of them are endemic to the region. There are at least 7,500 flowering plants, 700 orchids, 58 bamboo species, 64 citrus species, 28 conifers, 500 mosses, 700 ferns and 728 lichens. The region is the home of more than three hundred different ethnic communities having diverse knowledge on traditional uses of flora and fauna as food, medicine and beverages. Monpa, Memba and Khamba are among the local communities residing in high altitude region of Eastern Himalaya with rich traditional knowledge related to utilization of wild edible plants. The Monpas, Memba and Khamba are the followers Mahayana sect of Himalayan Buddhism and they are mostly agrarian by primary occupation and also heavily relaying on wild edible plants for their livelihood security during famine since millennia. In the present study, we have reported traditional uses of 40 wild edible plant species and out of which 6 species were analysed at biochemical level for nutrients contents and free radical scavenging activities. The results have shown significant free radical scavenging (antioxidant) activity and nutritional potential of the selected 6 wild edible plants used by the local communities of Eastern Himalayan Region of India.

Keywords: East Himalaya, local community, wild edible plants, nutrition, food security

Procedia PDF Downloads 262
10248 Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries

Authors: Concetta Busacca, Leone Frusteri, Orazio Di Blasi, Alessandra Di Blasi

Abstract:

The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles.

Keywords: electrospinning, self standing materials, Na ion battery, cathode materials

Procedia PDF Downloads 70
10247 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability

Authors: Mulubrhan Berihu

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 43
10246 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials

Authors: Fadi Althoey, Yaghoob Farnam

Abstract:

Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.

Keywords: concrete, damage, chemcial phase, NaCl, SCMs

Procedia PDF Downloads 143
10245 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 98
10244 Utilization of Biodiversity of Peaces Herbals Used as Food and Treat the Path of Economic Phu Sing District in Sisaket Province Thailand

Authors: Nopparet Thammasaranyakun

Abstract:

This research objects are: 1: To study the biodiversity of medicinal plants used for food and medicinal tourism economies along the Phu Sing district Sisaket province. 2: To study the use of medicinal plants used for food and medicinal tourism economies along the Phu Sing district Sisaket province. 3: To provide a database of information on biodiversity for food and medicinal plants and medicinal tourism economies along the Phu Sing district Sisaket province. 4: Learn to create a biodiversity of medicinal plants used as food and treatment by Journeys economic Phu Sing district Sisaket province Boundaries used in this study was the Phu Sing district. Population and Agricultural Development Center, rayong Mun due to the initiative for youth Local, Government Health officials, community leaders, teachers, students, schools, the local people and tourists. Sage wisdom to know the herbs and women's groups, OTOP Phu Sing district in SiisaKet province. By selecting the specific data that way. The process of participatory action research (PAR) is a community-based research. The method of collecting qualitative data. (Qualitative) tool is used from context, Community areas, interview and Taped recordings. Observation and focus group data was statistically analyzed using descriptive statistics (Descriptive Statistics). The results findings: 1- A study of the biodiversity of plants used for food and medicinal tourism economies along the Phu Sing district Sisaket province. Were used in the dry season and the rainy season find the medicinal plants of 251 species 41 types of drugs. 2- The study utilized medicinal plants used as food and the treatment of indigenous Phu Sing Sisaket province. Found 251 species have medicinal properties that are used for food and medicinal purposes 41 types of drugs. 3- Of the database technology of biodiversity for food and medicinal plants used by local treatment Phu Sing district Sisaket province. A data base of 251 medicinal species 41 types of drugs is used for food and medicinal properties Sisaket province. 4- learning the biodiversity of medicinal plants used for food and medicinal tourism economies along the Phu Sing district Sisaket province.

Keywords: utilization of biodiversity, peaces herbals, used as Food, Sing district, sisaket

Procedia PDF Downloads 358
10243 Beyond the Economics of Food: Household Food Strategies in Clusters of the Umkhanyakude District Municipality

Authors: Mduduzi Nhlozi

Abstract:

Food insecurity continues to persist in rural areas of South Africa today. A number of factors can be attributed to this including declining rural economies, rising unemployment, natural disasters such as drought as well as shifting cultural norms, values, traditions and beliefs. This paper explores mechanisms used by rural households to achieve food security in the midst of various threats and risks to their livelihoods. The study used semi-structured questionnaire to collect information on lived experiences of households in their quest to access and ensure availability of food. The paper finds that households use a number of food strategies namely economy-related, culture-related and rite-of-passage related strategies to achieve food security. The thrust of argument in the paper is that there is a need for food security studies to move beyond the orthodox, economic analytic framework, towards new institutional economics, focusing on local governance and socio-cultural systems supporting households to achieve food security. It advocates for localised food security plans to be developed by local municipalities to improve food security status for rural households.

Keywords: household, food insecurity, food strategies, new institutional economics, umkhanyakude

Procedia PDF Downloads 120
10242 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 163
10241 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 333
10240 Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm

Authors: V. V. Singh, Yusuf Ibrahim Gwanda, Rajesh Prasad

Abstract:

In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution.

Keywords: reliability, availability Gumbel-Hougaard family copula, MTTF, internet data centre

Procedia PDF Downloads 530
10239 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow

Authors: Marzieh Khezerloo, Lyazid Djenidi

Abstract:

Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.

Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction

Procedia PDF Downloads 113