Search results for: grain coarsening temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7635

Search results for: grain coarsening temperature

6075 Occurrence and Levels of Mycotoxins in On-Farm Stored Sesame in Major-Growing Districts of Ethiopia

Authors: S. Alemayehu, F. A. Abera, K. M. Ayimut, R. Mahroof, J. Harvey, B. Subramanyam

Abstract:

The occurrence of mycotoxins in sesame seeds poses a significant threat to food safety and the economy in Ethiopia. This study aimed to determine the levels and occurrence of mycotoxins in on-farm stored sesame seeds in major-growing districts of Ethiopia. A total of 470 sesame seed samples were collected from randomly selected farmers' storage structures in five major-growing districts using purposive sampling techniques. An enzyme-linked immunosorbent assay (ELISA) was used to analyze the collected samples for the presence of four mycotoxins: total aflatoxins (AFT), ochratoxin A (OTA), total fumonisins (FUM), and deoxynivalenol (DON). The study found that all samples contained varying levels of mycotoxins, with AFT and DON being the most prevalent. AFT concentrations in detected samples ranged from 2.5 to 27.8 parts per billion (ppb), with a mean concentration of 13.8 ppb. OTA levels ranged from 5.0 ppb to 9.7 ppb, with a mean level of 7.1 ppb. Total fumonisin concentrations ranged from 300 to 1300 ppb in all samples, with a mean of 800 ppb. DON concentrations ranged from 560 to 700 ppb in the analyzed samples. The majority (96.8%) of the samples were safe from AFT, FUM, and DON mean levels when compared to the Federal Drug Administration maximum limit. AFT-OTA, DON-OTA, AFT-FUM, FUM-DON, and FUM-OTA, respectively, had co-occurrence rates of 44.0, 38.3, 33.8, 30.2, 29.8 and 26.0% for mycotoxins. On average, 37.2% of the sesame samples had fungal infection, and seed germination rates ranged from 66.8% to 91.1%. The Limmu district had higher levels of total aflatoxins, kernel infection, and lower germination rates than other districts. The Wollega variety of sesame had higher kernel infection, total aflatoxins concentration, and lower germination rates than other varieties. Grain age had a statistically significant (p<0.05) effect on both kernel infection and germination. The storage methods used for sesame in major-growing districts of Ethiopia favor mycotoxin-producing fungi. As the levels of mycotoxins in sesame are of public health significance, stakeholders should come together to identify secure and suitable storage technologies to maintain the quantity and quality of sesame at the level of smallholder farmers. This study suggests the need for suitable storage technologies to maintain the quality of sesame and reduce the risk of mycotoxin contamination.

Keywords: districts, seed germination, kernel infection, moisture content, relative humidity, temperature

Procedia PDF Downloads 138
6074 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan

Authors: Usman Ahmed Khan

Abstract:

Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.

Keywords: LST, LULC, isodata, urbanization

Procedia PDF Downloads 101
6073 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)

Authors: Nurdan Olguncelik Kaplan, Aysen Akay

Abstract:

Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.

Keywords: buckwheat, cadmium, phytoremediation, zinc

Procedia PDF Downloads 418
6072 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization

Authors: Zh. M. Blednova, P. O. Rusinov

Abstract:

Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.

Keywords: diffusion metallization, nikelid titanium surface layers, shape memory effect, nanostructures

Procedia PDF Downloads 326
6071 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes

Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao

Abstract:

Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.

Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process

Procedia PDF Downloads 362
6070 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System

Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li

Abstract:

The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.

Keywords: afterburner, combustion, field synergy, solid oxide fuel cell

Procedia PDF Downloads 137
6069 Developing Stability Monitoring Parameters for NIPRIMAL®: A Monoherbal Formulation for the Treatment of Uncomplicated Malaria

Authors: Ekere E. Kokonne, Isimi C. Yetunde, Okoh E. Judith, Okafor E. Ijeoma, Ajeh J. Isaac, Olobayo O. Kunle, Emeje O. Martins

Abstract:

NIPRIMAL® is a mono herbal formulation of Nauclea latifolia used in the treatment of malaria. The stability of extracts made from plant material is essential to ensure the quality, safety and efficacy of the finished product. This study assessed the stability of the formulation under three different storage conditions; normal room temperature, infrared and under refrigeration. Differential Scanning Calorimetry (DSC) and Thin Layer Chromatography (TLC) were used to monitor the formulations. The DSC analysis was done from 0oC to 350oC under the three storage conditions. Results obtained indicate that NIPRIMAL® was stable at all the storage conditions investigated. Thin layer chromatography (TLC) after 6 months showed there was no significant difference between retention factor (RF) values for the various storage conditions. The reference sample had four spots with RF values of 0.47, 0.68, 0.76, 0.82 respectively and these spots were retained in the test formulations with corresponding RF values were after 6 months at room temperature and refrigerated temperature been 0.56, 0.73, 0.80, 0.92 and 0.47, 0.68, 0.76, 0.82 respectively. On the other hand, the RF values (0.55, 0.74, 0.77, 0.93) obtained under infrared after 1 month varied slightly from the reference. The sample exposed to infrared had a lower heat capacity compared to that stored under room temperature or refrigeration. A combination of TLC and DSC measurements has been applied for assessing the stability of NIPRIMAL®. Both methods were found to be rapid, sensitive and reliable in determining its stability. It is concluded that NIPRIMAL® can be stored under any of the tested conditions without degradation. This study is a major contribution towards developing appropriate stability monitoring parameters for herbal products.

Keywords: differential scanning calorimetry, formulation, NIPRIMAL®, stability, thin layer hromatography

Procedia PDF Downloads 258
6068 Effects of Environmental Parameters on Salmonella Contaminated in Harvested Oysters (Crassostrea lugubris and Crassostrea belcheri)

Authors: Varangkana Thaotumpitak, Jarukorn Sripradite, Saharuetai Jeamsripong

Abstract:

Environmental contamination from wastewater discharges originated from anthropogenic activities introduces the accumulation of enteropathogenic bacteria in aquatic animals, especially in oysters, and in shellfish harvesting areas. The consumption of raw or partially cooked oysters can be a risk for seafood-borne diseases in human. This study aimed to evaluate the relationship between the presence of Salmonella in oyster meat samples, and environmental factors (ambient air temperature, relative humidity, gust wind speed, average wind speed, tidal condition, precipitation and season) by using the principal component analysis (PCA). One hundred and forty-four oyster meat samples were collected from four oyster harvesting areas in Phang Nga province, Thailand from March 2016 to February 2017. The prevalence of Salmonella of each site was ranged from 25.0-36.11% in oyster meat. The results of PCA showed that ambient air temperature, relative humidity, and precipitation were main factors correlated with Salmonella detection in these oysters. Positive relationship was observed between positive Salmonella in the oysters and relative humidity (PC1=0.413) and precipitation (PC1=0.607), while the negative association was found between ambient air temperature (PC1=0.338) and the presence of Salmonella in oyster samples. These results suggested that lower temperature and higher precipitation and higher relative humidity will possibly effect on Salmonella contamination of oyster meat. During the high risk period, harvesting of oysters should be prohibited to reduce pathogenic bacteria contamination and to minimize a hazard of humans from Salmonellosis.

Keywords: oyster, Phang Nga Bay, principal component analysis, Salmonella

Procedia PDF Downloads 132
6067 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 162
6066 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 260
6065 Austempered Compacted Graphite Irons: Influence of Austempering Temperature on Microstructure and Microscratch Behavior

Authors: Rohollah Ghasemi, Arvin Ghorbani

Abstract:

This study investigates the effect of austempering temperature on microstructure and scratch behavior of the austempered heat-treated compacted graphite irons. The as-cast was used as base material for heat treatment practices. The samples were extracted from as-cast ferritic CGI pieces and were heat treated under austenitising temperature of 900°C for 60 minutes which followed by quenching in salt-bath at different austempering temperatures of 275°C, 325°C and 375°C. For all heat treatments, an austempering holding time of 30 minutes was selected for this study. Light optical microscope (LOM) and scanning electron microscope (SEM) and electron back scattered diffraction (EBSD) analysis confirmed the ausferritic matrix formed in all heat-treated samples. Microscratches were performed under the load of 200, 600 and 1000 mN using a sphero-conical diamond indenter with a tip radius of 50 μm and induced cone angle 90° at a speed of 10 μm/s at room temperature ~25°C. An instrumented nanoindentation machine was used for performing nanoindentation hardness measurement and microscratch testing. Hardness measurements and scratch resistance showed a significant increase in Brinell, Vickers, and nanoindentation hardness values as well as microscratch resistance of the heat-treated samples compared to the as-cast ferritic sample. The increase in hardness and improvement in microscratch resistance are associated with the formation of the ausferrite matrix consisted of carbon-saturated retained austenite and acicular ferrite in austempered matrix. The maximum hardness was observed for samples austempered at 275°C which resulted in the formation of very fine acicular ferrite. In addition, nanohardness values showed a quite significant variation in the matrix due to the presence of acicular ferrite and carbon-saturated retained austenite. It was also observed that the increase of austempering temperature resulted in increase of volume of the carbon-saturated retained austenite and decrease of hardness values.

Keywords: austempered CGI, austempering, scratch testing, scratch plastic deformation, scratch hardness

Procedia PDF Downloads 137
6064 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 118
6063 Thermal Pre-Treatment of Sewage Sludge in Fluidized Bed for Enhancing Its Solid Fuel Properties

Authors: Sujeeta Karki, Jeeban Poudel, Ja Hyung Choi, Sea Cheon Oh

Abstract:

A lab-scale fluidized bed was used for the study of sewage sludge, a non-lignocellulosic biomass, torrefaction. The influence of torrefaction temperature ranging from 200–350 °C and residence time of 0–50 minutes on the physical and chemical properties of the torrefied product was investigated. Properties of the torrefied product were analyzed on the basis of degree of torrefaction, ultimate and proximate analysis, gas analysis and chemical exergy. The degree of torrefaction and chemical exergy had a positive influence on increasing the torrefaction temperature. Moreover, the effect of torrefaction temperature and residence time on the elemental variation of sewage sludge exhibited an increase in the weight percentage of carbon while the content of H/C and O/C molar ratios decreased. The product gas emitted during torrefaction was analyzed to study the pathway of hydrocarbons and oxygen-containing compounds. The compounds with oxygen were emitted at higher temperatures in contrast to hydrocarbon gases. An attempt was made to obtain the chemical exergy of sewage sludge. In addition, the study of various correlations for predicting the calorific value of torrefied sewage sludge was made.

Keywords: chemical exergy, degree of torrefaction, fluidized bed, higher heating value (HHV), O/C and H/C molar ratios, sewage sludge

Procedia PDF Downloads 169
6062 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature

Procedia PDF Downloads 430
6061 A Case Study on Impact of Climate Change and Adaptation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino, Kota Masuyama, Naoya Nakajima

Abstract:

The aim of this paper is to study the behavior or influence of climate adaptation and change in Kabul Metropolitan Area (KMA). The Kabul Metropolitan Area (KMA) in Afghanistan includes Kabul existing city and Kabul New City (KNC). Kabul Metropolitan Area has admitted the challenges due to climate change, which includes, natural climate change, social transformations, city landscape, economic and political issues, etc. KMA will withhold a large population within its boundaries. The main problems competed in KMA were the temperature changes over the years, especially in Hindukush and Central Highland of Afghanistan from 1950 up to 2010, 1°C and 1.71°C raised respectively and reduction of water table in existing Kabul city due to the use of more water from underground water resources. Moreover, the cause of temperature rise, the precipitation in spring season and melting of snow early or melting in compressed time as well as the water source is directly related to the capacity of the mountains snow and precipitation. In addition, the temperature increased, and precipitation declined in spring period. It is directly related to separation of dissertation, migration to the cities and other challenges that we will discuss in this paper.

Keywords: climate change, climate adaption, adaptation in Kabul metropolitan area, precipitation

Procedia PDF Downloads 252
6060 Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study

Authors: N. Berrouachedi, M. Bouslama, S. Rioual, B. Lescop, J. Langlois

Abstract:

Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices.

Keywords: zincblend structure, half metallic ferromagnet, spin moments, total and partial DOS, DRX, Wien2k

Procedia PDF Downloads 274
6059 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys

Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa

Abstract:

The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.

Keywords: thermal comfort, energy consumption, energy standards, comfort models

Procedia PDF Downloads 325
6058 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 460
6057 Exergy Analysis of Vapour Compression Refrigeration System Using R507A, R134a, R114, R22 and R717

Authors: Ali Dinarveis

Abstract:

This paper compares the energy and exergy efficiency of a vapour compression refrigeration system using refrigerants of different groups. In this study, five different refrigerants including R507A, R134a, R114, R22 and R717 have been studied. EES Program is used to solve the thermodynamic equations. The results of this analysis are shown graphically. Based on the results, energy and exergy efficiencies for R717 are higher than the other refrigerants. Also, the energy and exergy efficiencies will be decreased with increasing the condensing temperature and decreasing the evaporating temperature.

Keywords: Energy, Exergy, Refrigeration, thermodynamic, vapour

Procedia PDF Downloads 151
6056 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate

Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano

Abstract:

The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.

Keywords: ammonium nitrate, malachite, copper oxide, leaching

Procedia PDF Downloads 190
6055 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 144
6054 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 290
6053 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings

Authors: Sandeep Bandarwadkar, Tadas Zdankus

Abstract:

To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.

Keywords: heat transfer, accumulation of heat, underground building, soil charge

Procedia PDF Downloads 73
6052 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well

Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar

Abstract:

During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.

Keywords: pin end, microstructure, grain size, stress corrosion cracks

Procedia PDF Downloads 81
6051 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)

Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das

Abstract:

In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.

Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper

Procedia PDF Downloads 286
6050 Analyzing the Climate Change Impact and Farmer's Adaptability Strategies in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Sonia

Abstract:

The agriculture sector is deemed more vulnerable to climate change as its variation can directly affect the crop’s productivity, but farmers’ adaptation strategies play a vital role in climate change-agriculture relationship. Therefore, this research has been undertaken to assess the Climate Change impact on wheat productivity and farmers’ adaptability strategies in Khyber Pakhtunkhwa province, Pakistan. The panel dataset was analyzed to gauge the impact of changing climate variables (i.e., temperature, rainfall, and humidity) on wheat productivity from 1985 to 2015. Amid the study period, the fixed effect estimates confirmed an inverse relationship of temperature and rainfall on the wheat yield. The impact of temperature is observed to be detrimental as compared to the rainfall, causing 0.07 units reduction in the production of wheat with 1C upsurge in temperature. On the flip side, humidity revealed a positive association with the wheat productivity by confirming that high humidity could be beneficial to the production of the crop over time. Thus, this study ensures significant nexus between agricultural production and climatic parameters. However, the farming community in the underlying study area has limited knowledge about the adaptation strategies to lessen the detrimental impact of changing climate on crop yield. It is recommended that farmers should be well equipped with training and advanced agricultural management practices under the realm of climate change. Moreover, innovative technologies pertinent to the agriculture system should be encouraged to handle the challenges arising due to variations in climate factors.

Keywords: climate change, fixed effect model, panel data, wheat productivity

Procedia PDF Downloads 125
6049 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 46
6048 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil

Abstract:

Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulose enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulose to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulose producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulose activity. The optimal temperature for its growth and cellulose production is 37 °C. The optimal temperature of bacterial cellulose activity is 60 °C. The cellulose enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36 h. showed highest cellulose activity at 120 U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulose activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.

Keywords: cellulose enzyme, bagasse, rice straw, rice husk, acinetobacter sp. KKU44

Procedia PDF Downloads 315
6047 pH and Thermo-Sensitive Nanogels for Anti-Cancer Therapy

Authors: V. Naga Sravan Kumar Varma, H. G. Shivakumar

Abstract:

The aim of the study was to develop dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) (PNA) nanogels(NGs) and studying its applications for Anti-Cancer therapy. NGs were fabricated by free radical polymerization using different amount of N-isopropylacrylamide and acrylic acid. A study for polymer composition over the effect on LCST in different pH was evaluated by measuring the absorbance at 500nm using UV spectrophotometer. Further selected NG’s were evaluated for change in hydrodynamic diameters in response to pH and temperature. NGs which could sharply respond to low pH value of cancer cells at body temperature were loaded with Fluorouracil (5-FU) using equilibrium swelling method and studied for drug release behaviour in different pH. A significant influence of NGs polymer composition over pH dependent LCST was observed. NGs which were spherical with an average particle size of 268nm at room temperature, shrinked forming an irregular shape when heated above to their respective LCST. 5FU loaded NGs did not intervene any difference in pH depended LCST behaviour of NGs. The in vitro drug release of NGs exhibited a pH and thermo-dependent control release. The cytoxicity study of blank carrier to MCF7 cell line showed no cytotoxicity. The results indicated that PNA NGs could be used as a potential drug carrier for anti-cancer therapy.

Keywords: pH and thermo-sensitive, nanogels, P(NIPAM-co-AAc), anti-cancer, 5-FU

Procedia PDF Downloads 353
6046 A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator

Authors: Rosa Christodoulaki, Irene Koronaki, Panagiotis Tsekouras

Abstract:

The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions.

Keywords: concentrating solar collector, energy analysis , stationary reflector, tracking absorber

Procedia PDF Downloads 203