Search results for: cefoxitin disc diffusion MRSA detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4818

Search results for: cefoxitin disc diffusion MRSA detection

3258 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
3257 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 167
3256 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 348
3255 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection

Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde

Abstract:

An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.

Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil

Procedia PDF Downloads 590
3254 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics

Authors: Leyla Esfandiari

Abstract:

Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.

Keywords: diagnostics, nanopore, nucleic acids, sensor

Procedia PDF Downloads 465
3253 Directly Observed Treatment Short-Course (DOTS) for TB Control Program: A Ten Years Experience

Authors: Solomon Sisay, Belete Mengistu, Woldargay Erku, Desalegne Woldeyohannes

Abstract:

Background: Tuberculosis is still the leading cause of illness in the world which accounted for 2.5% of the global burden of disease, and 25% of all avoidable deaths in developing countries. Objectives: The aim of study was to assess impact of DOTS strategy on tuberculosis case finding and treatment outcome in Gambella Regional State, Ethiopia from 2003 up to 2012 and from 2002 up to 2011, respectively. Methods: Health facility-based retrospective study was conducted. Data were collected and reported in quarterly basis using WHO reporting format for TB case finding and treatment outcome from all DOTS implementing health facilities in all zones of the region to Federal Ministry of Health. Results: A total of 10024 all form of TB cases had been registered between the periods from 2003 up to 2012. Of them, 4100 (40.9%) were smear-positive pulmonary TB, 3164 (31.6%) were smear-negative pulmonary TB and 2760 (27.5%) had extra-pulmonary TB. Case detection rate of smear-positive pulmonary TB had increased from 31.7% to 46.5% from the total TB cases and treatment success rate increased from 13% to 92% with average mean value of being 40.9% (SD= 0.1) and 55.7% (SD=0.28), respectively for the specified year periods. Moreover, the average values of treatment defaulter and treatment failure rates were 4.2% and 0.3%, respectively. Conclusion: It is possible to achieve the recommended WHO target which is 70% of CDR for smear-positive pulmonary TB, and 85% of TSR as it was already been fulfilled the targets for treatments more than 85% from 2009 up to 2011 in the region. However, it requires strong efforts to enhance case detection rate of 40.9% for smear-positive pulmonary TB through implementing alternative case finding strategies.

Keywords: Gambella Region, case detection rate, directly observed treatment short-course, treatment success rate, tuberculosis

Procedia PDF Downloads 344
3252 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 97
3251 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
3250 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 260
3249 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 345
3248 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum

Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*

Abstract:

African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.

Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity

Procedia PDF Downloads 77
3247 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 393
3246 Effect of Tillage Technology on Species Composition of Weeds in Monoculture of Maize

Authors: Svetlana Chovancova, Frantisek Illek, Jan Winkler

Abstract:

The effect of tillage technology of maize on intensity of weed infestation and weed species composition was observed at experimental field. Maize is grown consecutively since 2001. The experimental site is situated at an altitude of 230 m above sea level in the Czech Republic. Variants of tillage technology are CT: plowing – conventional tillage 0.22 m, MT: loosening – disc tillage on the depth of 0.1 – 0.12 m, NT: direct sowing – without tillage. The evaluation of weed infestation was carried out by numerical method in years 2012 and 2013. Within the monitoring were found 20 various species of weeds. Conventional tillage (CT) primarily supports the occurrence of perennial weeds (Cirsium arvense, Convolvulus arvensis). Late spring species (Chenopodium album, Echinochloa crus-galli) were more frequently noticed on variants of loosening (MT) and direct sowing (NT). Different tillage causes a significant change of weed species spectrum in maize.

Keywords: weeds, maize, tillage, loosening, direct sowing

Procedia PDF Downloads 473
3245 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication

Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye

Abstract:

Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.

Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite

Procedia PDF Downloads 126
3244 Automatic Censoring in K-Distribution for Multiple Targets Situations

Authors: Naime Boudemagh, Zoheir Hammoudi

Abstract:

The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.

Keywords: parameters estimation, method of moments, automatic censoring, K distribution

Procedia PDF Downloads 373
3243 Boundary Layer Control Using a Magnetic Field: A Case Study in the Framework of Ferrohydrodynamics

Authors: C. F. Alegretti, F. R. Cunha, R. G. Gontijo

Abstract:

This work investigates the effects of an applied magnetic field on the geometry-driven boundary layer detachment flow of a ferrofluid over a sudden expansion. Both constitutive equation and global magnetization equation for a ferrofluid are considered. Therefore, the proposed formulation consists in a coupled magnetic-hydrodynamic problem. Computational simulations are carried out in order to explore, not only the viability to control flow instabilities, but also to evaluate the consistency of theoretical aspects. The unidirectional sudden expansion in a ferrofluid flow is investigated numerically under the perspective of Ferrohydrodynamics in a two-dimensional domain using a Finite Differences Method. The boundary layer detachment induced by the sudden expansion results in a recirculating zone, which has been extensively studied in non-magnetic hydrodynamic problems for a wide range of Reynolds numbers. Similar investigations can be found in literature regarding the sudden expansion under the magnetohydrodynamics framework, but none considering a colloidal suspension of magnetic particles out of the superparamagnetic regime. The vorticity-stream function formulation is implemented and results in a clear coupling between the flow vorticity and its magnetization field. Our simulations indicate a systematic decay on the length of the recirculation zone as increasing physical parameters of the flow, such as the intensity of the applied field and the volume fraction of particles. The results all are discussed from a physical point of view in terms of the dynamical non-dimensional parameters. We argue that the decrease/reduction in the recirculation region of the flow is a direct consequence of the magnetic torque balancing the action of the torque produced by viscous and inertial forces of the flow. For the limit of small Reynolds and magnetic Reynolds parameters, the diffusion of vorticity balances the diffusion of the magnetic torque on the flow. These mechanics control the growth of the recirculation region.

Keywords: boundary layer detachment, ferrofluid, ferrohydrodynamics, magnetization, sudden expansion

Procedia PDF Downloads 203
3242 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis

Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti

Abstract:

Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.

Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis

Procedia PDF Downloads 160
3241 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection

Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar

Abstract:

Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.

Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE

Procedia PDF Downloads 369
3240 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 387
3239 Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification

Authors: Bo Ram Choi, Ji Su Kim, Juyeon Cho, Hyukjin Lee

Abstract:

Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads.

Keywords: rolling circle amplification (RCA), Escherichia coli (E. coli), point of care testing (POCT), beads aggregation, capillary tube

Procedia PDF Downloads 365
3238 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
3237 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 63
3236 Molecular Detection of mRNA bcr-abl and Circulating Leukemic Stem Cells CD34+ in Patients with Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia and Its Association with Clinical Parameters

Authors: B. Gonzalez-Yebra, H. Barajas, P. Palomares, M. Hernandez, O. Torres, M. Ayala, A. L. González, G. Vazquez-Ortiz, M. L. Guzman

Abstract:

Leukemia arises by molecular alterations of the normal hematopoietic stem cell (HSC) transforming it into a leukemic stem cell (LSC) with high cell proliferation, self-renewal, and cell differentiation. Chronic myeloid leukemia (CML) originates from an LSC-leading to elevated proliferation of myeloid cells and acute lymphoblastic leukemia (ALL) originates from an LSC development leading to elevated proliferation of lymphoid cells. In both cases, LSC can be identified by multicolor flow cytometry using several antibodies. However, to date, LSC levels in peripheral blood (PB) are not established well enough in ALL and CML patients. On the other hand, the detection of the minimal residue disease (MRD) in leukemia is mainly based on the identification of the mRNA bcr-abl gene in CML patients and some other genes in ALL patients. There is no a properly biomarker to detect MDR in both types of leukemia. The objective of this study was to determine mRNA bcr-abl and the percentage of LSC in peripheral blood of patients with CML and ALL and identify a possible association between the amount of LSC in PB and clinical data. We included in this study 19 patients with Leukemia. A PB sample was collected per patient and leukocytes were obtained by Ficoll gradient. The immunophenotype for LSC CD34+ was done by flow cytometry analysis with CD33, CD2, CD14, CD16, CD64, HLA-DR, CD13, CD15, CD19, CD10, CD20, CD34, CD38, CD71, CD90, CD117, CD123 monoclonal antibodies. In addition, to identify the presence of the mRNA bcr-abl by RT-PCR, the RNA was isolated using TRIZOL reagent. Molecular (presence of mRNA bcr-abl and LSC CD34+) and clinical results were analyzed with descriptive statistics and a multiple regression analysis was performed to determine statistically significant association. In total, 19 patients (8 patients with ALL and 11 patients with CML) were analyzed, 9 patients with de novo leukemia (ALL = 6 and CML = 3) and 10 under treatment (ALL = 5 and CML = 5). The overall frequency of mRNA bcr-abl was 31% (6/19), and it was negative in ALL patients and positive in 80% in CML patients. On the other hand, LSC was determined in 16/19 leukemia patients (%LSC= 0.02-17.3). The Novo patients had higher percentage of LSC (0.26 to 17.3%) than patients under treatment (0 to 5.93%). The amount of LSC was significantly associated with the amount of LSC were: absence of treatment, the absence of splenomegaly, and a lower number of leukocytes, negative association for the clinical variables age, sex, blasts, and mRNA bcr-abl. In conclusion, patients with de novo leukemia had a higher percentage of circulating LSC than patients under treatment, and it was associated with clinical parameters as lack of treatment, absence of splenomegaly and a lower number of leukocytes. The mRNA bcr-abl detection was only possible in the series of patients with CML, and molecular detection of LSC could be identified in the peripheral blood of all leukemia patients, we believe the identification of circulating LSC may be used as biomarker for the detection of the MRD in leukemia patients.

Keywords: stem cells, leukemia, biomarkers, flow cytometry

Procedia PDF Downloads 356
3235 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 212
3234 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 127
3233 Study of the Tribological Behavior of a Sliding Contact Brass-Steel Couple with Electrical Current

Authors: C. Boubechou, A. Bouchoucha, H. Zaidi

Abstract:

The aim of this paper is to study the tribological behavior of a dynamic contact steel-brass couple with electric current. This study looks at a dry contact brass-steel couple where friction and wear are studied in terms of mechanical and electrical parameters. For this reason, a tribometer, pin-rotary disc is used in an atmospheric atmosphere. The test parameters are as follows: the normal load (5-30N), the sliding speed (0.1 to 0.5 m / s) and the electric current (3-10A). The duration of each test is 30 minutes. The experimental results show that these parameters have a significant effect on the tribological behavior of the couple studied. The discussion of results is based on observations, using an optical microscope, MEB and a profilometer, worn surfaces and interface phenomena resulting from the process of sliding contact.

Keywords: brass-steel couple, dry friction, electrical current, morphology, normal load, sliding speeds, wear

Procedia PDF Downloads 267
3232 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 151
3231 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 694
3230 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry

Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty

Abstract:

Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.

Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe

Procedia PDF Downloads 285
3229 Effectiveness of Essential Oils as Inhibitors of Quorum Sensing Activity Using Biomonitor Strain Chromobacterium Violaceum

Authors: Ivana Cabarkapa, Zorica Tomicic, Olivera Duragic

Abstract:

Antimicrobial resistance represents one of the major challenges facing humanity in the last decades. Increasing antibiotic-resistant pathogens indicates the need for the development of alternative antibacterial drugs and new treatment strategies. One of the innovative emerging treatments in overcoming multidrug-resistant pathogens certainly represents the inhibition anti-quorum sensing system. For most of the food-borne pathogens, the expression of the virulence depends on their capability communication with other members of the population by means of quorum sensing (QS). QS represents a specific way of bacterial intercellular communication, which enabled owing to their ability to detect and to respond to cell population density by gene regulation. QS mechanisms are responsible for controls the pathogenesis, virulence luminescence, motility, sporulation and biofilm formation of many organisms by regulating gene expression. Therefore, research in this field is being an attractive target for the development of new natural antibacterial agents. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Considering the importance of quorum sensing during bacterial pathogenesis, this research has been focused on evaluation anti - QS properties of four essential oils (EOs) Origanum heracleoticum, Origanum vulgare, Thymus vulgare, and Thymus serpyllum, using biomonitor strain of Chromobacterium violaceum CV026. Tests conducted on Luria Bertani agar supplemented with N hexanol DL homoserine lacton (HHL) 10µl/50ml of agar. The anti-QS potential of the EOs was assayed in a range of concentrations of 200 – 0.39 µl/ml using the disc diffusion method. EOs of Th. vulgaris and T. serpyllum were exhibited anti-QS activity indicated by a non- pigmented ring with a dilution-dependent manner. The lowest dilution of EOs T. vulgaris and T. serpyllum in which they exhibited visually detectable inhibition of violacein synthesis was 6.25 µl/ml for both tested EOs. EOs of O. heracleoticum and O. vulgare were displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by the outer non-pigmented ring, in a concentration-dependent manner. The lowest dilution of EOs of O. heracleoticum and O. vulgare in which exhibited visually detectable inhibition of violacein synthesis was 1.56 and 3.25 µl/ml, respectively. Considering that, the main constituents of the tested EOs represented by monoterpenes (carvacrol, thymol, γ-terpinene, and p-cymene), anti - QS properties of tested EOs can be mainly attributed to their activity. In particular, from the scientific literature, carvacrol and thymol show a sub-inhibitory effect against foodborne pathogens. Previous studies indicated that sub-lethal concentrations of carvacrol reduced the mobility of bacteria due to the ability of interference using QS mechanism between the bacterial cells, and thereby reducing the ability of biofilm formation The precise mechanism by which carvacrol inhibits biofilm formation is still not fully understood. Our results indicated that EOs displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by an outer non- pigmented ring with visually detectable inhibition of violacein. Preliminary results suggest that EOs represent a promising alternative for effective control of the emergence and spread of resistant pathogens.

Keywords: anti-quorum sensing activity, Chromobacterium violaceum, essential oils, violacein

Procedia PDF Downloads 138