Search results for: water losses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9578

Search results for: water losses

8048 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 212
8047 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines

Authors: Humanyun Zahir, Irtsam Ghazi

Abstract:

This report outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter are presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.

Keywords: magnetic induction, flow meter, Faraday's law, immersion, cathodic protection, anode, cathode, flange, grounding, plant information management system, electrodes

Procedia PDF Downloads 418
8046 Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia

Authors: Inga Badasyan

Abstract:

Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake.

Keywords: ecohydrological monitoring, flood risk management, global warming, aquatic macroinvertebrates

Procedia PDF Downloads 288
8045 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain

Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey

Abstract:

The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.

Keywords: environmental quality, hydrogeochemistry, metal mining, surface water

Procedia PDF Downloads 143
8044 Separation of Mercury(Ii) from Petroleum Produced Water via Hollow Fiber Supported Liquid Membrane and Mass Transfer Modeling

Authors: Srestha Chaturabul, Wanchalerm Srirachat, Thanaporn Wannachod, Prakorn Ramakul, Ura Pancharoen, Soorathep Kheawhom

Abstract:

The separation of mercury(II) from petroleum-produced water from the Gulf of Thailand was carried out using a hollow fiber supported liquid membrane system (HFSLM). Optimum parameters for feed pretreatment were 0.2 M HCl, 4% (v/v) Aliquat 336 for extractant and 0.1 M thiourea for stripping solution. The best percentage obtained for extraction was 99.73% and for recovery 90.11%, respectively. The overall separation efficiency noted was 94.92% taking account of both extraction and recovery prospects. The model for this separation developed along a combined flux principle i.e. convection–diffusion–kinetic. The results showed excellent agreement with theoretical data at an average standard deviation of 1.5% and 1.8%, respectively.

Keywords: separation, mercury(ii), petroleum produced water, hollow fiber, liquid membrane

Procedia PDF Downloads 298
8043 Addressing Water Scarcity in Gomti Nagar, Lucknow, India: Assessing the Effectiveness of Rooftop Rainwater Harvesting Systems

Authors: Rajkumar Ghosh

Abstract:

Water scarcity is a significant challenge in urban areas, even in smart cities (Lucknow, Bangalore, Jaipur, etc.) where efficient resource management is prioritized. The depletion of groundwater resources in Gomti Nagar, Lucknow, Uttar Pradesh, India is particularly severe, posing a significant challenge for sustainable development in the region. This study focuses on addressing the water shortage by investigating the effectiveness of rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to bridge the gap between groundwater recharge and extraction. The aim of this study is to assess the effectiveness of RTRWHs in reducing aquifer depletion and addressing the water scarcity issue in the Gomti Nagar region. The research methodology involves the utilization of RTRWHs as the primary method for collecting rainwater. RTRWHs will be implemented in residential and commercial buildings to maximize the collection of rainwater. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. Statistical analysis and modelling techniques were employed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed using statistical analysis and modelling techniques to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. Widespread adoption of RTRWHs in all buildings and integration into urban planning and development processes are crucial for efficient water management in smart cities like Gomti Nagar. These findings can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis.

Keywords: water scarcity, urban areas, smart cities, resource management, groundwater depletion, rooftop rainwater harvesting systems, sustainable development, sustainable water management, mitigating water scarcity

Procedia PDF Downloads 76
8042 A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination

Authors: Zied Guidara, Alexander Morgenstern, Aref Younes Maalej

Abstract:

In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.

Keywords: air conditioning, desalination, condensation, design, desiccant wheel

Procedia PDF Downloads 503
8041 Study of Radiological and Chemical Effects of Uranium in Ground Water of SW and NE Punjab, India

Authors: Komal Saini, S. K. Sahoo, B. S. Bajwa

Abstract:

The Laser Fluorimetery Technique has been used for the microanalysis of uranium content in water samples collected from different sources like the hand pumps, tube wells in the drinking water samples of SW & NE Punjab, India. The geographic location of the study region in NE Punjab is between latitude 31.21º- 32.05º N and longitude 75.60º-76.14º E and for SW Punjab is between latitude 29.66º-30.48º N and longitude 74.69º-75.54º E. The purpose of this study was mainly to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of these regions. In the present study 131 samples of drinking water collected from different villages of SW and 95 samples from NE, Punjab state, India have been analyzed for chemical and radiological toxicity. In the present investigation, uranium content in water samples of SW Punjab ranges from 0.13 to 908 μgL−1 with an average of 82.1 μgL−1 whereas in samples collected from NE- Punjab, it ranges from 0 to 28.2 μgL−1 with an average of 4.84 μgL−1. Thus, revealing that in the SW- Punjab 54 % of drinking water samples have uranium concentration higher than international recommended limit of 30 µgl-1 (WHO, 2011) while 35 % of samples exceeds the threshold of 60 µgl-1 recommended by our national regulatory authority of Atomic Energy Regulatory Board (AERB), Department of Atomic Energy, India, 2004. On the other hand in the NE-Punjab region, none of the observed water sample has uranium content above the national/international recommendations. The observed radiological risk in terms of excess cancer risk ranges from 3.64x10-7 to 2.54x10-3 for SW-Punjab, whereas for NE region it ranges from 0 to 7.89x10-5. The chemical toxic effect in terms of Life-time average Daily Dose (LDD) and Hazard Quotient (HQ) have also been calculated. The LDD for SW-Punjab varies from 0.0098 to 68.46 with an average of 6.18 µg/ kg/day whereas for NE region it varies from 0 to 2.13 with average 0.365 µg/ kg/day, thus indicating presence of chemical toxicity in SW Punjab as 35% of the observed samples in the SW Punjab are above the recommendation limit of 4.53 µg/ kg/day given by AERB for 60 µgl-1 of uranium. Maximum & Minimum values for hazard quotient for SW Punjab is 0.002 & 15.11 with average 1.36 which is considerably high as compared to safe limit i.e. 1. But for NE Punjab HQ varies from 0 to 0.47. The possible sources of high uranium observed in the SW- Punjab will also be discussed.

Keywords: uranium, groundwater, radiological and chemical toxicity, Punjab, India

Procedia PDF Downloads 381
8040 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 61
8039 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67
8038 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 137
8037 Static Application Security Testing Approach for Non-Standard Smart Contracts

Authors: Antonio Horta, Renato Marinho, Raimir Holanda

Abstract:

Considered as an evolution of the Blockchain, the Ethereum platform, besides allowing transactions of its cryptocurrency named Ether, it allows the programming of decentralised applications (DApps) and smart contracts. However, this functionality into blockchains has raised other types of threats, and the exploitation of smart contracts vulnerabilities has taken companies to experience big losses. This research intends to figure out the number of contracts that are under risk of being drained. Through a deep investigation, more than two hundred thousand smart contracts currently available in the Ethereum platform were scanned and estimated how much money is at risk. The experiment was based in a query run on Google Big Query in July 2022 and returned 50,707,133 contracts published on the Ethereum platform. After applying the filtering criteria, the experimentgot 430,584 smart contracts to download and analyse. The filtering criteria consisted of filtering out: ERC20 and ERC721 contracts, contracts without transactions, and contracts without balance. From this amount of 430,584 smart contracts selected, only 268,103 had source codes published on Etherscan, however, we discovered, using a hashing process, that there were contracts duplication. Removing the duplicated contracts, the process ended up with 20,417 source codes, which were analysed using the open source SAST tool smartbugswith oyente and securify algorithms. In the end, there was nearly $100,000 at risk of being drained from the potentially vulnerable smart contracts. It is important to note that the tools used in this study may generate false positives, which may interfere with the number of vulnerable contracts. To address this point, our next step in this research is to develop an application to test the contract in a parallel environment to verify the vulnerability. Finally, this study aims to alert users and companies about the risk on not properly creating and analysing their smart contracts before publishing them into the platform. As any other application, smart contracts are at risk of having vulnerabilities which, in this case, may result in direct financial losses.

Keywords: blockchain, reentrancy, static application security testing, smart contracts

Procedia PDF Downloads 88
8036 Assessment of Physical Characteristics of Maize (Zea Mays) Stored in Metallic Silos

Authors: B. A. Alabadan, E. S. Ajayi, C. A. Okolo

Abstract:

The storage losses recorded globally in maize (Zea mays) especially in the developing countries is worrisome. Certain degenerating changes in the physical characteristics (PC) of the grain occur due to the interaction between the stored maize and the immediate environment especially during long storage period. There has been tremendous reduction in the storage losses since the evolution of metallic silos. This study was carried out to assess the physical quality attributes of maize stored in 2500 MT and 1 MT metallic silos for a period of eight months. The PC evaluated includes percentage moisture content MC, insect damage ID, foreign matters FM, hectolitre weight HC, mould M and germinability VG. The evaluation of data obtained was done using statistical package for social sciences (SPSS 20) for windows evaluation version to determine significant levels and trend of deterioration (P < 0.05) for all the values obtained using Multiple Analysis of Variance (MANOVA) and Duncan’s multivariate test. The result shows that the PC are significant with duration of storage at (P < 0.05) except MI and FM that are significant at (P > 0.05) irrespective of the size of the metallic silos. The average mean deviation for physical properties from the control in respect to duration of storage are as follows: MC 10.0 ±0.00%, HC 72.9 ± 0.44% ID 0.29 ± 0.00%, BG 0.55±0.05%, MI 0.00 ± 0.65%, FM 0.80± 0.20%, VG 100 ± 0.03%. The variables that were found to be significant (p < 0.05) with the position of grain in the bulk are VG, MI and ID while others are insignificant at (p > 0.05). Variables were all significant (p < 0.05) with the duration of storage with (0.00) significant levels, irrespective of the size of the metallic silos, but were insignificant with the position of the grain in the bulk (p > 0.05). From the results, it can be concluded that there is a slight decrease of the following variables, with time, HC, MC, and V, probably due to weather fluctuations and grain respiration, while FM, BG, ID and M were found to increase slightly probably due to insect activity in the bigger silos and loss of moisture. The size of metallic silos has no remarkable influence on the PC of stored maize (Zea mays). Germinability was found to be better with the 1 MT silos probably due to its hermetic nature. Smaller size metallic silos are preferred for storage of seeds but bigger silos largely depend on the position of the grains in the bulk.

Keywords: maize, storage, silo, physical characteristics

Procedia PDF Downloads 308
8035 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students

Authors: Dina L. DiSantis

Abstract:

Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.

Keywords: education for sustainability, place-based learning, watershed science, water quality

Procedia PDF Downloads 154
8034 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
8033 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel

Authors: Shuo Huang, Huomiao Guo, Wenrui Huang

Abstract:

In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.

Keywords: density flow, estuarine, navigation channel, structure

Procedia PDF Downloads 259
8032 Ground Water Sustainable Management in Ethiopia, Africa

Authors: Ebissa Gadissa Kedir

Abstract:

This paper presents the potential groundwater assessment and sustainable management in the selected study area. It is the most preferred water source in all climatic zones for its convenient availability, drought dependability, excellent quality, and low development cost. The rural areas, which account for more than 85% of the country's population, are encountered a shortage of potable water supply which can be solved by proper groundwater utilization. For the present study area, the groundwater potential is assessed and analysed. Thus, the study area falls in four potential groundwater zones ranging from poor to high. However, the current groundwater management practices in the study area are poor. Despite the pervasive and devastating challenges, immediate and proper responses have not yet been given to the problem. Thus, such frustrating threats and challenges have initiated the researcher to work in the project area.

Keywords: GW potential, GW management, GW sustainability, South gonder, Ethiopia

Procedia PDF Downloads 66
8031 Rainwater Harvesting is an Effective Tool for City’s Storm Water Management and People’s Willingness to Install Rainwater Harvesting System in Buildings: A Case Study in Kazipara, Dhaka, Bangladesh

Authors: M. Abu Hanif, Anika Tabassum, Fuad Hasan Ovi, Ishrat Islam

Abstract:

Water is essential for life. Enormous quantities of water are cycled each year through hydrologic cycle but only a fraction of circulated water is available each year for human use. Dhaka, the capital of Bangladesh is the 19th mega city in the world with a population of over 14 million (World City Information, 2011). As a result the growth of urban population is increasing rapidly; the city is not able to manage with altering situations due to resource limitations and management capacity. Water crisis has become an acute problem faced by the inhabitants of Dhaka city. It is found that total water demand in Dhaka city is 2,240 million liter per day (MLD) whereas supply is 2,150 (MLD). According to Dhaka Water Supply and Sewerage Authority about 87 percent of this supply comes from groundwater resources and rest 13 percent from surface water. According to Dhaka Water Supply and Sewerage Authority it has been found that the current groundwater depletion rate is 3.52 meter per year. Such a fast depletion of the water table will result in intrusion of southern saline water into the groundwater reservoir, depriving this mega city of pure drinking water. This study mainly focus on the potential of Rainwater Harvesting System(RWHS) in Kazipara area of Dhaka city, determine the perception level of local people in installation of rainwater harvesting system in their building and identify the factors regarding willingness of owner in installing rainwater harvesting system. As most of the residential area of Dhaka city is unplanned with small plots, Kazipara area has been chosen as study area which depicts similar characteristics. In this study only roof top area is considered as catchment area and potential of rainwater harvesting has been calculated. From the calculation it is found that harvested rainwater can serve the 66% of demand of water for toilet flushing and cleaning purposes for the people of Kazipara. It is also observed that if only rooftop rainwater harvesting applied to all the structures of the study area then two third of surface runoff would be reduced than present surface runoff. In determining the perception of local people only owners of the buildings were. surveyed. From the questionnaire survey it is found that around 75% people have no idea about the rainwater harvesting system. About 83% people are not willing to install rainwater harvesting system in their dwelling. The reasons behind the unwillingness are high cost of installation, inadequate space, ignorance about the system, etc. Among 16% of the willing respondents who are interested in installing RWHS system, it was found that higher income, bigger size of buildings are important factors in willingness of installing rainwater harvesting system. Majority of the respondents demanded for both technical and economical support to install the system in their buildings. Government of Bangladesh has taken some initiatives to promote rainwater harvesting in urban areas. It is very much necessary to incorporate rainwater harvesting device and artificial recharge system in every building of Dhaka city to make Dhaka city self sufficient in water supply management and to solve water crisis problem of megacity like as Dhaka city.

Keywords: rainwater harvesting, water table, willingness, storm water

Procedia PDF Downloads 244
8030 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients

Authors: M. Abbasi

Abstract:

A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.

Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates

Procedia PDF Downloads 67
8029 The Effect of Nanotechnology Structured Water on Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Double-Blinded Randomized Study

Authors: Ali Kamal M. Sami, Safa Almukhtar, Alaa Al-Krush, Ismael Hama-Amin Akha Weas, Ruqaya Ahmed Alqais

Abstract:

Introduction and Objectives Lower urinary tract symptoms (LUTS) are common among men with benign prostatic hyperplasia (BPH). The combination of 5 alpha-reductase inhibitors and alpha-blockers has been used as a conservative treatment of male LUTS secondary to BPH. Nanotechnology structured water magnalife is a type of water that is produced by modulators and specific frequency and energy fields that transform ordinary water into this Nanowater. In this study, we evaluated the use of Nano-water with the conservative treatment and to see if it improves the outcome and gives better results in those patients with LUTS/BPH. Material and methods For a period of 3 months, 200 men with International Prostate Symptom Score (IPSS)≥13, maximum flow rate (Qmax)≤ 15ml/s, and prostate volume > 30 and <80 ccs were randomly divided into two groups. Group A 100 men were given Nano-water with the (tamsulosindutasteride) and group B 100 men were given ordinary bottled water with the (tamsulosindutasteride). The water bottles were unlabeled and were given in a daily dose of 20ml/kg body weight. Dutasteride 0.5mg and tamsulosin 0.4 mg daily doses. Both groups were evaluated for the IPSS, Qmax, Residual Urine (RU), International Index of Erectile Function–Erectile Function (IIEF-EF) domain at the beginning (baseline data), and at the end of the 3 months. Results Of the 200 men with LUTS who were included in this study, 193 men were followed, and 7 men dropped out of the study for different reasons. In group A which included 97 men with LUTS, IPSS decreased by 16.82 (from 20.47 to 6.65) (P<0.00001) and Qmax increased by 5.73 ml/s (from 11.71 to 17.44) (P<0.00001) and RU <50 ml in 88% of patients (P<0.00001) and IIEF-EF increased to 26.65 (from 16.85) (P<0.00001). While in group B, 96 men with LUTS, IPSS decreased by 8.74(from 19.59 to 10.85)(P<0.00001) and Qmax increased by 4.67 ml/s(from 10.74 to 15.41)(P<0.00001), RU<50 ml in 75% of patients (P<0.00001), and IIEF-EF increased to 21(from 15.87)(P<0.00001). Group A had better results than group B. IPSS in group A decreased to 6.65 vs 10.85 in group B(P<0.00001), also Qmax increased to 17.44 in group A vs 15.41 in group B(P<0.00001), group A had RU <50 ml in 88% of patients vs 75% of patients in group B(P<0.00001).Group A had better IIEF-EF which increased to 26.65 vs 21 in group B(P<0.00001). While the differences between the baseline data of both groups were statistically not significant. Conclusion The use of nanotechnology structured water magnalife gives a better result in terms of LUTS and scores in patients with BPH. This combination is showing improvements in IPSS and even in erectile function in those men after 3 months.

Keywords: nano water, lower urinary tract symptoms, benign prostatic hypertrophy, erectile dysfunction

Procedia PDF Downloads 72
8028 Suitability Assessment of Water Harvesting and Land Restoration in Catchment Comprising Abandoned Quarry Site in Addis Ababa, Ethiopia

Authors: Rahel Birhanu Kassaye, Ralf Otterpohl, Kumelachew Yeshitila

Abstract:

Water resource management and land degradation are among the critical issues threatening the suitable livability of many cities in developing countries such as Ethiopia. Rapid expansion of urban areas and fast growing population has increased the pressure on water security. On the other hand, the large transformation of natural green cover and agricultural land loss to settlement and industrial activities such as quarrying is contributing to environmental concerns. Integrated water harvesting is considered to play a crucial role in terms of providing alternative water source to insure water security and helping to improve soil condition, agricultural productivity and regeneration of ecosystem. Moreover, it helps to control stormwater runoff, thus reducing flood risks and pollution, thereby improving the quality of receiving water bodies and the health of inhabitants. The aim of this research was to investigate the potential of applying integrated water harvesting approaches as a provision for water source and enabling land restoration in Jemo river catchment consisting of abandoned quarry site adjacent to a settlement area that is facing serious water shortage in western hilly part of Addis Ababa city, Ethiopia. The abandoned quarry site, apart from its contribution to the loss of aesthetics, has resulted in poor water infiltration and increase in stormwater runoff leading to land degradation and flooding in the downstream. Application of GIS and multi-criteria based analysis are used for the assessment of potential water harvesting technologies considering the technology features and site characteristics of the case study area. Biophysical parameters including precipitation, surrounding land use, surface gradient, soil characteristics and geological aspects are used as site characteristic indicators and water harvesting technologies including retention pond, check dam, agro-forestation employing contour trench system were considered for evaluation with technical and socio-economic factors used as parameters in the assessment. The assessment results indicate the different suitability potential among the analyzed water harvesting and restoration techniques with respect to the abandoned quarry site characteristics. Application of agro-forestation with contour trench system with the revegetation of indigenous plants is found to be the most suitable option for reclamation and restoration of the quarry site. Successful application of the selected technologies and strategies for water harvesting and restoration is considered to play a significant role to provide additional water source, maintain good water quality, increase agricultural productivity at urban peri-urban interface scale and improve biodiversity in the catchment. The results of the study provide guideline for decision makers and contribute to the integration of decentralized water harvesting and restoration techniques in the water management and planning of the case study area.

Keywords: abandoned quarry site, land reclamation and restoration, multi-criteria assessment, water harvesting

Procedia PDF Downloads 216
8027 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice

Authors: Sultana Afrin Nipa

Abstract:

Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.

Keywords: colorado river, indigenous rights, law of the river, water governance, water justice

Procedia PDF Downloads 32
8026 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, markov chain, optimization, waste water

Procedia PDF Downloads 413
8025 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 147
8024 Feasibility of Deployable Encasing for a CVDR (Cockpit Voice and Data Recorder) in Commercial Aircraft

Authors: Vishnu Nair, Rohan Kapoor

Abstract:

Recent commercial aircraft crashes demand a paradigm shift in how the CVDRs are located and recovered, particularly if the aircraft crashes in the sea. CVDR (Cockpit Voice and Data Recorder) is most vital component out of the entire wreckage that can be obtained in order to investigate the sequence of events leading to the crash. It has been a taxing and exorbitantly expensive process locating and retrieving the same in the massive water bodies as it was seen in the air crashes in the recent past, taking the unfortunate Malaysia airlines MH-370 crash into account. The study aims to provide an aid to the persisting problem by improving the buoyant as-well-as the aerodynamic properties of the proposed CVDR encasing. Alongside this the placement of the deployable CVDR on the surface of the aircraft and floatability in case of water submersion are key factors which are taken into consideration for a better resolution to the problem. All of which results into the Deployable-CVDR emerging to the surface of the water-body. Also the whole system is designed such that it can be seamlessly integrated with the current crop of commercial aircraft. The work is supported by carrying out a computational study with the help Ansys-Fluent combination.

Keywords: encasing, buoyancy, deployable CVDR, floatability, water submersion

Procedia PDF Downloads 300
8023 Lessons Learnt from Industry: Achieving Net Gain Outcomes for Biodiversity

Authors: Julia Baker

Abstract:

Development plays a major role in stopping biodiversity loss. But the ‘silo species’ protection of legislation (where certain species are protected while many are not) means that development can be ‘legally compliant’ and result in biodiversity loss. ‘Net Gain’ (NG) policies can help overcome this by making it an absolute requirement that development causes no overall loss of biodiversity and brings a benefit. However, offsetting biodiversity losses in one location with gains elsewhere is controversial because people suspect ‘offsetting’ to be an easy way for developers to buy their way out of conservation requirements. Yet the good practice principles (GPP) of offsetting provide several advantages over existing legislation for protecting biodiversity from development. This presentation describes the learning from implementing NG approaches based on GPP. It regards major upgrades of the UK’s transport networks, which involved removing vegetation in order to construct and safely operate new infrastructure. While low-lying habitats were retained, trees and other habitats disrupting the running or safety of transport networks could not. Consequently, achieving NG within the transport corridor was not possible and offsetting was required. The first ‘lessons learnt’ were on obtaining a commitment from business leaders to go beyond legislative requirements and deliver NG, and on the institutional change necessary to embed GPP within daily operations. These issues can only be addressed when the challenges that biodiversity poses for business are overcome. These challenges included: biodiversity cannot be measured easily unlike other sustainability factors like carbon and water that have metrics for target-setting and measuring progress; and, the mindset that biodiversity costs money and does not generate cash in return, which is the opposite of carbon or waste for example, where people can see how ‘sustainability’ actions save money. The challenges were overcome by presenting the GPP of NG as a cost-efficient solution to specific, critical risks facing the business that also boost industry recognition, and by using government-issued NG metrics to develop business-specific toolkits charting their NG progress whilst ensuring that NG decision-making was based on rich ecological data. An institutional change was best achieved by supporting, mentoring and training sustainability/environmental managers for these ‘frontline’ staff to embed GPP within the business. The second learning was from implementing the GPP where business partnered with local governments, wildlife groups and land owners to support their priorities for nature conservation, and where these partners had a say in decisions about where and how best to achieve NG. From this inclusive approach, offsetting contributed towards conservation priorities when all collaborated to manage trade-offs between: -Delivering ecologically equivalent offsets or compensating for losses of one type of biodiversity by providing another. -Achieving NG locally to the development whilst contributing towards national conservation priorities through landscape-level planning. -Not just protecting the extent and condition of existing biodiversity but ‘doing more’. -The multi-sector collaborations identified practical, workable solutions to ‘in perpetuity’. But key was strengthening linkages between biodiversity measures implemented for development and conservation work undertaken by local organizations so that developers support NG initiatives that really count.

Keywords: biodiversity offsetting, development, nature conservation planning, net gain

Procedia PDF Downloads 195
8022 Minimizing Ship’S Breakdown Maintenance Due to Rope Entangled In Propeller With “Si Kuman” On Mooring Boat PSC I in Surabaya

Authors: Jogi Prayogo, Dwi Qaqa Prasetyatama, Rahmad Dwi Afandi, Kunto Arief Prasetyo, Viorel Herniza Leksono

Abstract:

PT. Pertamina Trans Kontinental managed a fleet of 364 ships in 2018 - 2020. In that period, there were 8 incidents of ship damage, causing breakdown maintenance on 6 ships belonging to PT Pertamina Trans Kontinental throughout Indonesia's operational areas due to ropes entangled in propellers. The company's losses that were caused by the fouled propellers amounted to 306.35 Million Rupiah. Of the 8 incidents, Mooring Boat PSC I was taken as a pilot project for further analysis considering the location of the ship which is in Surabaya and Mooring Boat PSC I has experienced 2 incidents of rope entanglement that caused the company's losses due to the largest Breakdown Maintenance amounted to 200.99 Million Rupiah. After analyzing the rope entanglement in the ship's propeller based on the data of Mooring Boat PSC I related to the location of propellers that are often fouled in the conventional propulsion system, it was found that there is a suitable location for the implementation of SI KUMAN tool that serves to cut ropes to prevent the occurrence of rope entangled in ship propellers. The determination of SI KUMAN tool is based on the strength of the ship's material to be installed and a suitable design to prevent the occurrence of ropes being entangled in propellers. After the installation of the "SI KUMAN" tool and monitoring carried out for 1 year period (August 2020 - August 2021), it was found that SI KUMAN tool can eliminate the risk of fouled propeller incidents which previously occurred twice in one year so that the company's loss amounted to 200.99 Million Rupiah can be eliminated and SI KUMAN tool can still operate optimally.

Keywords: breakdown maintenance, mooring boat, fleet, fouled propeller, rope entangled, cut

Procedia PDF Downloads 181
8021 CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation

Authors: Masashi Kanazawa, Takaaki Nakano, Masaaki Takemoto, Tomonori Imamura, Mamiko Sugimura, Toshitaka Ito

Abstract:

Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks.

Keywords: CT scan, intoxication, pulmonary edema, water-soluble paint

Procedia PDF Downloads 173
8020 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
8019 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 210