Search results for: high conservation value forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21604

Search results for: high conservation value forest

20074 Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating

Authors: Saadat Ali, Rashid Abdulla Ahmed Alshehhi

Abstract:

Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method.

Keywords: faults, VLF, real cases, cables

Procedia PDF Downloads 112
20073 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
20072 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.

Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties

Procedia PDF Downloads 401
20071 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry

Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim

Abstract:

SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.

Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application

Procedia PDF Downloads 138
20070 The Positive Effects of Social Distancing on Individual Work Outcomes in the Context of COVID-19

Authors: Fan Wei, Tang Yipeng

Abstract:

The outbreak of COVID-19 in early 2020 has been raging around the world, which has severely affected people's work and life. In today's post-pandemic era, although the pandemic has been effectively controlled, people still need to maintain social distancing at all times to prevent the further spread of the virus. Based on this, social distancing in the context of the pandemic has aroused widespread attention from scholars. At present, most studies exploring the influencing factors of social distancing are studying the negative impact of social distancing on the physical and mental state of special groups from the inter-individual level, and their more focus on the forced complete social distancing during the severe period of the pandemic. Few studies have focused on the impact of social distancing on working groups in the post-pandemic era from the within-individual level. In order to explore this problem, this paper constructs a cross-level moderating model based on resource conservation theory from the perspective of psychological resources. A total of 81 subjects were recruited to fill in the three-stage questionnaires each day for 10 working days, and 661valid questionnaires were finally obtained. Through the empirical tests, the following conclusions were finally obtained: (1) At the within-individual level, daily social distancing is positively correlated with the second day’s recovery, and the individual’s low sociability regulates the relationship between social distancing and recovery. The indirect effect of daily social distancing through recovery has positive relationship employees’ work engagement and work-goal progress only when the individual has low sociability. For individuals with high sociability, none of these paths are significant. (2) At the within-individual level, there is a significant relationship between individual's recovery and work engagement and work-goal progress, indicating that the recovery of resources can produce positive work outcomes. According to the results, this study believes that in the post-pandemic era, social distancing can not only effectively prevent and control the pandemic but also have positive impacts. Employees can use the time and energy originally saved for social activities through social distancing to invest in things that can provide resources and help them recover.

Keywords: social distancing, recovery, work engagement, work goal progress, sociability

Procedia PDF Downloads 133
20069 The Impact of Economic Growth on Carbon Footprints of High-Income and Non-High-Income Countries: A Comparative Analysis

Authors: Ghunchq Khan

Abstract:

The increase in greenhouse gas (GHGs) emissions is a main environmental problem. Diverse human activities and inappropriate economic growth have stimulated a trade-off between economic growth and environmental deterioration all over the world. The impact of economic growth on the environment has received attention as global warming and environmental problems have become more serious. The focus of this study is on carbon footprints (production and consumption) and analyses the impact of GDP per capita on carbon footprints. A balanced panel of 99 countries from 2000 to 2016 is estimated by employing autoregressive distributed lags (ARDL) model – mean group (MG) and pooled mean group (PMG) estimators. The empirical results indicate that GDP per capita has a significant and positive impact in the short run but a negative effect in the long run on the carbon footprint of production in high-income countries by controlling trade openness, industry share, biological capacity, and population density. At the same time, GDP per capita has a significant and positive impact in both the short and long run on the carbon footprint of the production of non-high-income countries. The results also indicate that GDP per capita negatively impacts the carbon footprint of consumption for high-income countries; on the other hand, the carbon footprint of consumption increases as GDP per capita grows in non-high-income countries.

Keywords: ARDL, carbon footprint, economic growth, industry share, trade openness

Procedia PDF Downloads 95
20068 Development of High Temperature Mo-Si-B Based In-situ Composites

Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz

Abstract:

The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.

Keywords: molybdenum, composites, in-situ, mmc

Procedia PDF Downloads 66
20067 Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception

Authors: Jason Clarke, Michaela Porubanova, Angela Mazzoli, Gulsah Kut

Abstract:

What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow.

Keywords: time perception, entropy, temporal illusions, duration perception

Procedia PDF Downloads 172
20066 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated numerically. The physical model is a square enclosure with insulated top and bottom horizontal walls while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60, and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in the different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: nanofluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number

Procedia PDF Downloads 395
20065 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 181
20064 A Comparative Study of Essential Oils Used in Papyrus Sterilization: A Case Study from the Early Islamic Period

Authors: Bahaa Fawwaz‬‏

Abstract:

The study was conducted on a papyrus housed at the Museum of Islamic Art in Cairo, Egypt. This papyrus was inscribed with black ink. Twelve fungal species were isolated and identified. Five types of fungi were ultimately identified to complete the study. The isolated fungi were then incubated for three months after the aging procedure. This study investigates the in-vitro growth inhibition of Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Trichoderma longibrachiatum Rifai, and Paecilomyces variotii on papyrus. The hyphal growth was observed using the environmental scanning electron microscope (ESEM). Natural oils, such as lavender oil, lemongrass oil, and rosemary oil, were used. The impact of these natural oils on the newly aged papyrus was assessed using scanning electron microscopy and color analysis to identify the most effective oils for inhibiting fungus growth.

Keywords: conservation, papyrus, fungi, growth, environmental, essential oils

Procedia PDF Downloads 47
20063 Deteriorating Ambient Air Quality Resulted from Invasion of Foreign Air Pollutants

Authors: Kuo-C. Lo, Chung-H. Hung

Abstract:

Invasion of foreign air pollutants to deteriorate local air quality has become an emerging international issue of concern. This study aimed to apply meteorological and air quality model, WRF-Chem (V3.1), for simulating and analyzing the phenomenon of forming of high-concentrated particulate matters, PM10 and PM2.5, in ambient air of Taiwan during January 17th to 19th, 2014. The foreign air pollutants were mainly from long-distance transport of air pollutants of China being transported with a strong continental cold high. It was observed that PM10 and PM2.5 peaked as high as 182~588 μg/m3 and 95~165 μg/m3, respectively, in the ambient air of west side of Taiwan. They were about 2~3 folds higher than the usual concentrations of particulate matters in these seasons.

Keywords: WRF-Chem, air pollution, PM2.5, ambient air quality

Procedia PDF Downloads 460
20062 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 126
20061 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams

Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali

Abstract:

This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.

Keywords: experimental, fire, high strength concrete beams, monotonic loading

Procedia PDF Downloads 402
20060 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 100
20059 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
20058 Modeling the Cyclic Behavior of High Damping Rubber Bearings

Authors: Donatello Cardone

Abstract:

Bilinear hysteresis models are usually used to describe the cyclic behavior of high damping rubber bearings. However, they neglect a number of phenomena (such as the interaction between axial load and shear force, buckling and post-buckling behavior, cavitation, scragging effects, etc.) that can significantly influence the dynamic behavior of such isolation devices. In this work, an advanced hysteresis model is examined and properly calibrated using consolidated procedures. Results of preliminary numerical analyses, performed in OpenSees, are shown and compared with the results of experimental tests on high damping rubber bearings and simulation analyses using alternative nonlinear models. The findings of this study can provide an useful tool for the accurate evaluation of the seismic response of structures with rubber-based isolation systems.

Keywords: seismic isolation, high damping rubber bearings, numerical modeling, axial-shear force interaction

Procedia PDF Downloads 124
20057 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 44
20056 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors

Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang

Abstract:

Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.

Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor

Procedia PDF Downloads 430
20055 Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials

Authors: Si-Geun Choi, Hoon-Jae Park, Jung-Woo Cho, Jin-Ho Lim, Jin-Young Park, Joo-Young Oh, Jae-Il Jeong Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study.

Keywords: laser cladding, tilting pad bearing, white metal, mechanical properties

Procedia PDF Downloads 379
20054 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
20053 VANETs Geographic Routing Protocols: A survey

Authors: Ramin Karimi

Abstract:

One of common highly mobile wireless ad hoc networks is Vehicular Ad Hoc Networks. Hence routing in vehicular ad hoc network (VANET) has attracted much attention during the last few years. VANET is characterized by its high mobility of nodes and specific topology patterns. Moreover these networks encounter a significant loss rate and a very short duration of communication. In vehicular ad hoc networks, one of challenging is routing of data due to high speed mobility and changing topology of vehicles. Geographic routing protocols are becoming popular due to advancement and availability of GPS devices. Delay Tolerant Networks (DTNs) are a class of networks that enable communication where connectivity issues like sparse connectivity, intermittent connectivity; high latency, long delay, high error rates, asymmetric data rate, and even no end-to-end connectivity exist. In this paper, we review the existing Geographic Routing Protocols for VANETs and also provide a qualitative comparison of them.

Keywords: vehicular ad hoc networks, mobility, geographic routing, delay tolerant networks

Procedia PDF Downloads 520
20052 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability

Procedia PDF Downloads 65
20051 The Fibonacci Network: A Simple Alternative for Positional Encoding

Authors: Yair Bleiberg, Michael Werman

Abstract:

Coordinate-based Multi-Layer Perceptrons (MLPs) are known to have difficulty reconstructing high frequencies of the training data. A common solution to this problem is Positional Encoding (PE), which has become quite popular. However, PE has drawbacks. It has high-frequency artifacts and adds another hyper hyperparameter, just like batch normalization and dropout do. We believe that under certain circumstances, PE is not necessary, and a smarter construction of the network architecture together with a smart training method is sufficient to achieve similar results. In this paper, we show that very simple MLPs can quite easily output a frequency when given input of the half-frequency and quarter-frequency. Using this, we design a network architecture in blocks, where the input to each block is the output of the two previous blocks along with the original input. We call this a Fibonacci Network. By training each block on the corresponding frequencies of the signal, we show that Fibonacci Networks can reconstruct arbitrarily high frequencies.

Keywords: neural networks, positional encoding, high frequency intepolation, fully connected

Procedia PDF Downloads 98
20050 Effect of Climate Change and Water Sources: Sustainability of Rural Water Sanitation and Hygiene of Tanahun District

Authors: Bharat Sapkota

Abstract:

Nepal is the one of the victim country of climate change. Decreasing snow line, sometimes higher and sometime non-rain fall are common phenomena in hill area. Natural flood disaster and drought is also common every year in certain place of the country. So this paper analyze the effect of climate and natural water sources for sustainability of water sanitation and hygiene of Tanahun district. It is one of the Rural Water Supply and Sanitation Project Western Nepal Phase-II (RWSSP-WN Phase-II) project district out of 14 project districts of western and mid-western Nepal. RWSSP-WN II is a bilateral development cooperation of governments of Nepal and Finland. Big investment is still going on in water sanitation and hygiene sector but sustainability is still a challenge throughout the country. So RWSSP-WN has started the strengthen of the capacity of local Governments to deliver services in water supply, sanitation and hygiene and its sustainability through the implementation of cross cutting approach of climate change and disaster risk reduction. The study shows that the average yield in 685 natural point sources were around 0.045 l/s in 2014 but it was twice as high in 2004 i.e. 0.09 l/s. The maximum measured yield in 2014 was 1.87 l/s, whereas, the maximum yield was 3 l/s in 2004. Likewise, spring source mean and maximum yield measured in 2014 were 0.16 l/s and 3.33 l/s respectively, whereas, mean and maximum yields in 2004 were 0.204 l/s and 3 l/s respectively. Small streams average yield measured in 2014 was 0.32 l/s with the maximum of around 4.99 l/s. In 2004, mean and maximum yields of streams were 0.485 l/s and 5 l/s respectively. The overall climate between years 2002 to 2013 and measured yield data between 2004 and 2014 shows climate as one of the causes of water source decline. The temperature is rising with pace of 0.041°C per year and rainfall is decreased by 16.8 mm/year. The Khosla’s empirical formula shows decrease of 1.7 cm/year in runoff. At present sustainability of water, sanitation and hygiene is more challenge due to sources decreasing in the district. Sanitation and hygiene total behavior change and watershed conservation as well as design and implementation of recharge pound construction are the way forward of sustainability of water, sanitation and hygiene.

Keywords: water sanitation, hygiene, sustainability, climate change

Procedia PDF Downloads 337
20049 Design and Implementation of Image Super-Resolution for Myocardial Image

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.

Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction

Procedia PDF Downloads 375
20048 Parasitic Capacitance Modeling in Pulse Transformer Using FEA

Authors: D. Habibinia, M. R. Feyzi

Abstract:

Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.

Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency

Procedia PDF Downloads 515
20047 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors

Authors: Mohammad Alenezi

Abstract:

Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.

Keywords: metal oxide, nanostructure, hydrothermal, sensor

Procedia PDF Downloads 272
20046 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 153
20045 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS

Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar

Abstract:

Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.

Keywords: steady flow simulation, processing programs, simulation code, inviscid flux

Procedia PDF Downloads 429