Search results for: cost forecasting
5033 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD
Procedia PDF Downloads 2025032 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2245031 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing
Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi
Abstract:
Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management
Procedia PDF Downloads 85030 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle
Procedia PDF Downloads 1215029 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 1245028 Efficient Field-Oriented Motor Control on Resource-Constrained Microcontrollers for Optimal Performance without Specialized Hardware
Authors: Nishita Jaiswal, Apoorv Mohan Satpute
Abstract:
The increasing demand for efficient, cost-effective motor control systems in the automotive industry has driven the need for advanced, highly optimized control algorithms. Field-Oriented Control (FOC) has established itself as the leading approach for motor control, offering precise and dynamic regulation of torque, speed, and position. However, as energy efficiency becomes more critical in modern applications, implementing FOC on low-power, cost-sensitive microcontrollers pose significant challenges due to the limited availability of computational and hardware resources. Currently, most solutions rely on high-performance 32-bit microcontrollers or Application-Specific Integrated Circuits (ASICs) equipped with Floating Point Units (FPUs) and Hardware Accelerated Units (HAUs). These advanced platforms enable rapid computation and simplify the execution of complex control algorithms like FOC. However, these benefits come at the expense of higher costs, increased power consumption, and added system complexity. These drawbacks limit their suitability for embedded systems with strict power and budget constraints, where achieving energy and execution efficiency without compromising performance is essential. In this paper, we present an alternative approach that utilizes optimized data representation and computation techniques on a 16-bit microcontroller without FPUs or HAUs. By carefully optimizing data point formats and employing fixed-point arithmetic, we demonstrate how the precision and computational efficiency required for FOC can be maintained in resource-constrained environments. This approach eliminates the overhead performance associated with floating-point operations and hardware acceleration, providing a more practical solution in terms of cost, scalability and improved execution time efficiency, allowing faster response in motor control applications. Furthermore, it enhances system design flexibility, making it particularly well-suited for applications that demand stringent control over power consumption and costs.Keywords: field-oriented control, fixed-point arithmetic, floating point unit, hardware accelerator unit, motor control systems
Procedia PDF Downloads 155027 Substitution of Fish Meal by Local Vegetable Raw Materials in the Feed of Juvenile Nile Tilapia (Oreochromis Niloticus, Linne, 1758) in Senegal
Authors: Mamadou Sileye Niang
Abstract:
The study is a contribution to the development of a feed for juvenile tilapia Oreochromis niloticus, from local raw materials in order to reduce the cost of feeding farmed tilapia in Senegal. Three feeds were formulated from local raw materials. The basic composition of the tested feeds is as follows: A1 (peanut meal, rice bran, millet bran, maize meal and no fish meal); A2 (peanut meal, rice bran, millet bran, maize meal and 10% fish meal) and A3 (peanut meal, rice bran, millet bran, maize meal and 25% fish meal). All feeds contain 31% protein. The trial compared three batches, in 2 replicates, with different diets. The initial weight of the juveniles was 0.37± 0.5g. The daily ration was distributed at 9 am and 4 pm. After 90 days of the experiment, the final mean weights were 2.45 ± 0.5g; 2.75±0.5g; and 4.67 ± 0.5g for A1, A2, and A3, respectively. A performance test, of which the objective was to compare growth parameters, was conducted. The results of the growth parameters of juveniles fed A3 were significantly higher (p < 0.05) than those fed A1 and A2. The weight growth study shows similar growth during the first month. However, from this date onwards, juveniles fed A3 show a faster growth, which is maintained throughout the experiment. On the other hand, the Protein Efficiency Coefficient and the Survival Rate showed no significant difference. The zootechnical parameters are not significantly different (p > 0.05) between the two tanks for the same feed treatment.Keywords: nutrition, feed, fingerlings, Oreochromis, local raw materials, feed cost
Procedia PDF Downloads 725026 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption
Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque
Abstract:
The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency
Procedia PDF Downloads 4755025 Ionometallurgy for Recycling Silver in Silicon Solar Panel
Authors: Emmanuel Billy
Abstract:
This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver
Procedia PDF Downloads 2475024 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3695023 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application
Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang
Abstract:
The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process
Procedia PDF Downloads 2065022 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor
Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal
Abstract:
Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis
Procedia PDF Downloads 655021 Multi-Objective Optimization in Carbon Abatement Technology Cycles (CAT) and Related Areas: Survey, Developments and Prospects
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
An infinitesimal increase in performance can have immense reduction in operating and capital expenses in a power generation system. Therefore, constant studies are being carried out to improve both conventional and novel power cycles. Globally, power producers are constantly researching on ways to minimize emission and to collectively downsize the total cost rate of power plants. A substantial spurt of developmental technologies of low carbon cycles have been suggested and studied, however they all have their limitations and financial implication. In the area of carbon abatement in power plants, three major objectives conflict: The cost rate of the plant, Power output and Environmental impact. Since, an increase in one of this parameter directly affects the other. This poses a multi-objective problem. It is paramount to be able to discern the point where improving one objective affects the other. Hence, the need for a Pareto-based optimization algorithm. Pareto-based optimization algorithm helps to find those points where improving one objective influences another objective negatively and stops there. The application of Pareto-based optimization algorithm helps the user/operator/designer make an informed decision. This paper sheds more light on areas that multi-objective optimization has been applied in carbon abatement technologies in the last five years, developments and prospects.Keywords: gas turbine, low carbon technology, pareto optimal, multi-objective optimization
Procedia PDF Downloads 7915020 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 665019 The Virtual Container Yard: Identifying the Persuasive Factors in Container Interchange
Authors: L. Edirisinghe, Zhihong Jin, A. W. Wijeratne, R. Mudunkotuwa
Abstract:
The virtual container yard is an effective solution to the container inventory imbalance problem which is a global issue. It causes substantial cost to carriers, which inadvertently adds to the prices of consumer goods. The virtual container yard is rooted in the fundamentals of container interchange between carriers. If carriers opt to interchange their excess containers with those who are deficit, a substantial part of the empty reposition cost could be eliminated. Unlike in other types of ships, cargo cannot be directly loaded to a container ship. Slots and containers are supplementary components; thus, without containers, a carrier cannot ship cargo if the containers are not available and vice versa. Few decades ago, carriers recognized slot (the unit of space in a container ship) interchange as a viable solution for the imbalance of shipping space. Carriers interchange slots among them and it also increases the advantage of scale of economies in container shipping. Some of these service agreements between mega carriers have provisions to interchange containers too. However, the interchange mechanism is still not popular among carriers for containers. This is the paradox that prevails in the liner shipping industry. At present, carriers reposition their excess empty containers to areas where they are in demand. This research applied factor analysis statistical method. The paper reveals that five major components may influence the virtual container yard namely organisation, practice and culture, legal and environment, international nature, and marketing. There are 12 variables that may impact the virtual container yard, and these are explained in the paper.Keywords: virtual container yard, shipping, imbalance, management, inventory
Procedia PDF Downloads 1965018 Management Strategies for Risk Events in Construction Industries during Economic Situation and COVID-19 Pandemic in Nigeria
Authors: Ezeabasili Chibuike Patrick
Abstract:
The complex situation of construction industries in Nigeria and the risk of failures involved includes cost overrun, time overrun, Corruption, Government influence, Subcontractor challenges, Political influence and Instability, Cultural differences, Human resources deficiencies, cash flow Challenges, foreign exchange issues, inadequate design, Safety, low productivity, late payment, Quality control issues, project management issues, Environmental issues, Force majeure Competition amongst others has made the industry prone to risk and failures. Good project management remains effective in improving decision-making, which minimizes these risk events. This study was done to address these project risks and good decision-making to avert them. A mixed-method approach to research was used to do this study. Data collected by questionnaires and interviews on thirty-two (32) construction professionals was used in analyses to aid the knowledge and management of risks that were identified. The study revealed that there is no good risk management expertise in Nigeria. Also, that the economic/political situation and the recent COVID-19 pandemic has added to the risk and poor management strategies. The contingency theory and cost has therefore surfaced to be the most strategic management method used to reduce these risk issues and they seem to be very effective.Keywords: strategies, risk management, contingency theory, Nigeria
Procedia PDF Downloads 1315017 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems
Authors: Elaid Bouchetob, Bouchra Nadji
Abstract:
This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter
Procedia PDF Downloads 625016 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone
Authors: Marju Ben Sayed, Shigeko Haruyama
Abstract:
Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood
Procedia PDF Downloads 2975015 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 185014 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility
Authors: Akash Verma, Sujit Kumar Samanta
Abstract:
This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization
Procedia PDF Downloads 445013 Spiritual Symbols of African Fruits as Responsive Catalysts for Naturopathy
Authors: Orogun Daniel Oghenekevhwe
Abstract:
Africa being an agrarian continent has an abundance of fruits that are both nutritional and medicinal. Regardless of the abundance of these healing elements, Africa leads the statistics of poor healthcare globally. Among others, there are two noticeable challenges in the healthcare system which are ‘Poor access and high cost of medical healthcare’. The effects of both the access and economic implications are (1) Low responsiveness and (2) High mortality rate. While the United Nations and the global health community continue to work towards reduced mortality rates and poor responsiveness to healthcare and wellness, this paper investigates how some Africans use the spiritual symbols of African fruits as responsive catalysts to embrace naturopathy thereby reducing the effects and impacts of poor healthcare challenges in Africa. The main argument is whether there are links between spiritual symbols and fruits that influence Africans' response to naturopathy and low-cost healthcare. Following that is the question of how medical healthcare responds to such development. Bitter Kola (Garcinia) is the case study fruit, and Sunnyside in Pretoria, South Africa, has been spotted as one of the high-traffic selling points of herbal fruits. A mixed research method is applicable with an expected 20 Quantitative data respondents among sellers and nutritionists and 50 Qualitative Data respondents among consumers. Based on the results, it should be clear how spirituality contributes to alternative healthcare and how it can be further encouraged to bridge the gap between the high demand and low supply of healthcare in Africa and beyond.Keywords: spiritual symbols, naturopathy, African fruits, spirituality, healthcare
Procedia PDF Downloads 715012 Effects of the Affordable Care Act On Preventive Care Disparities
Authors: Cagdas Agirdas
Abstract:
Background: The Affordable Care Act (ACA) requires non-grandfathered private insurance plans, starting with plan years on or after September 23rd, 2010, to provide certain preventive care services without any cost sharing in the form of deductibles, copayments or co-insurance. This requirement may affect racial and ethnic disparities in preventive care as it provides the largest copay reduction in preventive care. Objectives: We ask whether the ACA’s free preventive care benefits are associated with a reduction in racial and ethnic disparities in the utilization of four preventive services: cholesterol screenings, colonoscopies, mammograms, and pap smears. Methods: We use a data set of over 6,000 individuals from the 2009, 2010, and 2013 Medical Expenditure Panel Surveys (MEPS). We restrict our data set only to individuals who are old enough to be eligible for each preventive service. Our difference-in-differences logistic regression model classifies privately-insured Hispanics, African Americans, and Asians as the treatment groups and 2013 as the after-policy year. Our control group consists of non-Hispanic whites on Medicaid as this program already covered preventive care services for free or at a low cost before the ACA. Results: After controlling for income, education, marital status, preferred interview language, self-reported health status, employment, having a usual source of care, age and gender, we find that the ACA is associated with increases in the probability of the median, privately-insured Hispanic person to get a colonoscopy by 3.6% and a mammogram by 3.1%, compared to a non-Hispanic white person on Medicaid. Similarly, we find that the median, privately-insured African American person’s probability of receiving these two preventive services improved by 2.3% and 2.4% compared to a non-Hispanic white person on Medicaid. We do not find any significant improvements for any racial or ethnic group for cholesterol screenings or pap smears. Furthermore, our results do not indicate any significant changes for Asians compared to non-Hispanic whites in utilizing the four preventive services. These reductions in racial/ethnic disparities are robust to reconfigurations of time periods, previous diagnosis, and residential status. Conclusions: Early effects of the ACA’s provision of free preventive care are significant for Hispanics and African Americans. Further research is needed for the later years as more individuals became aware of these benefits.Keywords: preventive care, Affordable Care Act, cost sharing, racial disparities
Procedia PDF Downloads 1535011 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 3355010 Potentiality of Biohythane Process for the Gaseous Energy Recovery from Organic Wastes
Authors: Debabrata Das, Preeti Mishra
Abstract:
A two-phase anaerobic process combining biohydrogen followed by biomethane (biohythane technology) serves as an environment-friendly and economically sustainable approach for the improved valorization of organic wastes. Suitability of the pure cultures like Klebsiela pneumonia, C. freundii, B. coagulan, etc. and mixed acidogenic cultures for the biohydrogen production was already studied. The characteristics of organic wastes play a critical role in biohydrogen production. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. Suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers’ dried grain with soluble (DDGS) and algal biomass (AB) as a co-substrate were studied for a biohythane production. Results show that maximum gaseous energy of 20.7, 9.3, 16.7 and 15.6 % was recovered using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB in terms of hythane production, respectively. The maximum cumulative hydrogen and methane production of 150 and 64 mmol/L were achieved using GDOC. Further, 98 % reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.Keywords: Biohythane, algal biomass, distillers’ dried grain with soluble (DDGS), groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC)
Procedia PDF Downloads 2005009 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 4075008 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications
Authors: Seshi Reddy Kasu, Florian Misoc
Abstract:
The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.Keywords: battery bank, photo-voltaic, pump-storage, wind energy
Procedia PDF Downloads 5955007 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2615006 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 1825005 Assessing Future Isoprene Emissions in Southeast Asia: Climate Change Implications
Authors: Justin Sentian, Franky Herman, Maggie Chel Gee Ooi, Vivian Kong WAN Yee, Teo You Rou, Chin Jia Hui
Abstract:
Isoprene emission is known to depend heavily on temperature and radiation. Considering these environmental factors together is crucial for a comprehensive understanding of the impact of climate change on isoprene emissions and atmospheric chemistry. Therefore, the aim of this study is to investigate how isoprene emission responds to changing climate scenarios in Southeast Asia (SEA). Two climate change scenarios, RCP4.5 and RCP8.5, were used to simulate climate change using the Weather Research Forecasting (WRF v3.9.1) model in three different time periods: near-future (2030-2039), mid-century (2050-2059), and far future (2090-2099), with 2010 (2005-2014) as the baseline period. The output from WRF was then used to investigate how isoprene emission changes under a changing climate by using the Model Emission of Gases and Aerosol from Nature (MEGAN v2.1). The results show that the overall isoprene emissions during the baseline period are 1.41 tons hr-1 during DJF and 1.64 tons hr-1 during JJA. The overall emissions for both RCPs slightly increase during DJF, ranging from 0.03 to 0.06 tons hr-1 in the near future, 0.11 to 0.19 tons hr-1 in the mid-century, and 0.24 to 0.52 tons hr-1 in the far future. During JJA season, environmental conditions often favour higher emission rates in MEGAN due to their optimal state. Isoprene emissions also show a strong positive correlation (0.81 – 1.00) with temperature and photosynthetic active radiation (PAR). The future emission rate of isoprene is strongly modulated by both temperature and PAR, as indicated by a strong positive correlation (0.81 - 1.00). This relationship underscores the fact that future warming will not be the sole driver impacting isoprene emissions. Therefore, it is essential to consider the multifaceted effect of climate change in shaping the levels of isoprene in the future.Keywords: isoprene, climate change, Southeast Asia, WRF, MEGAN.
Procedia PDF Downloads 285004 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 124