Search results for: conversion curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2224

Search results for: conversion curve

694 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation

Authors: Michael C. Barbecho, Romeo B. Morcilla

Abstract:

This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.

Keywords: electric vehicle, solar vehicles, front drive, solar, solar power

Procedia PDF Downloads 550
693 Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma

Authors: Doaa Hashad, Amany Elyamany, Perihan Salem

Abstract:

Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients.

Keywords: DNA copy number, HCC, HCV, mitochondrial

Procedia PDF Downloads 307
692 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 258
691 Characteristics and Drivers of Greenhouse Gas (GHG) emissions from China’s Manufacturing Industry: A Threshold Analysis

Authors: Rong Yuan, Zhao Tao

Abstract:

Only a handful of literature have used to non-linear model to investigate the influencing factors of greenhouse gas (GHG) emissions in China’s manufacturing sectors. And there is a limit in investigating quantitatively and systematically the mechanism of correlation between economic development and GHG emissions considering inherent differences among manufacturing sub-sectors. Considering the sectorial characteristics, the manufacturing sub-sectors with various impacts of output on GHG emissions may be explained by different development modes in each manufacturing sub-sector, such as investment scale, technology level and the level of international competition. In order to assess the environmental impact associated with any specific level of economic development and explore the factors that affect GHG emissions in China’s manufacturing industry during the process of economic growth, using the threshold Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model, this paper investigated the influence impacts of GHG emissions for China’s manufacturing sectors of different stages of economic development. A data set from 28 manufacturing sectors covering an 18-year period was used. Results demonstrate that output per capita and investment scale contribute to increasing GHG emissions while energy efficiency, R&D intensity and FDI mitigate GHG emissions. Results also verify the nonlinear effect of output per capita on emissions as: (1) the Environmental Kuznets Curve (EKC) hypothesis is supported when threshold point RMB 31.19 million is surpassed; (2) the driving strength of output per capita on GHG emissions becomes stronger as increasing investment scale; (3) the threshold exists for energy efficiency with the positive coefficient first and negative coefficient later; (4) the coefficient of output per capita on GHG emissions decreases as R&D intensity increases. (5) FDI shows a reduction in elasticity when the threshold is compassed.

Keywords: China, GHG emissions, manufacturing industry, threshold STIRPAT model

Procedia PDF Downloads 408
690 Enhanced Performance of Perovskite Solar Cells by Modifying Interfacial Properties Using MoS2 Nanoflakes

Authors: Kusum Kumari, Ramesh Banoth, V. S. Reddy Channu

Abstract:

Organic-inorganic perovskite solar cells (PrSCs) have emerged as a promising solar photovoltaic technology in terms of realizing high power conversion efficiency (PCE). However, their limited lifetime and poor device stability limits their commercialization in future. In this regard, interface engineering of the electron transport layer (ETL) using 2D materials have been currently used owing to their high carrier mobility, high thermal stability and tunable work function, which in turn enormously impact the charge carrier dynamics. In this work, we report an easy and effective way of simultaneously enhancing the efficiency of PrSCs along with the long-term stability through interface engineering via the incorporation of 2D-Molybdenum disulfide (2D-MoS₂, few layered nanoflakes) in mesoporous-Titanium dioxide (mp-TiO₂)scaffold electron transport buffer layer, and using poly 3-hexytheophene (P3HT) as hole transport layers. The PSCs were fabricated in ambient air conditions in device configuration, FTO/c-TiO₂/mp-TiO₂:2D-MoS₂/CH3NH3PbI3/P3HT/Au, with an active area of 0.16 cm². The best device using c-TiO₂/mp-TiO₂:2D-MoS₂ (0.5wt.%) ETL exhibited a substantial increase in PCE ~13.04% as compared to PCE ~8.75% realized in reference device fabricated without incorporating MoS₂ in mp-TiO₂ buffer layer. The incorporation of MoS₂ nanoflakes in mp-TiO₂ ETL not only enhances the PCE to ~49% but also leads to better device stability in ambient air conditions without encapsulation (retaining PCE ~86% of its initial value up to 500 hrs), as compared to ETLs without MoS₂.

Keywords: perovskite solar cells, MoS₂, nanoflakes, electron transport layer

Procedia PDF Downloads 53
689 Prediction of Super-Response to Cardiac Resynchronisation Therapy

Authors: Vadim A. Kuznetsov, Anna M. Soldatova, Tatyana N. Enina, Elena A. Gorbatenko, Dmitrii V. Krinochkin

Abstract:

The aim of the study was to evaluate potential parameters related with super-response to CRT. Methods: 60 CRT patients (mean age 54.3 ± 9.8 years; 80% men) with congestive heart failure (CHF) II-IV NYHA functional class, left ventricular ejection fraction < 35% were enrolled. At baseline, 1 month, 3 months and each 6 months after implantation clinical, electrocardiographic and echocardiographic parameters, NT-proBNP level were evaluated. According to the best decrease of left ventricular end-systolic volume (LVESV) (mean follow-up period 33.7 ± 15.1 months) patients were classified as super-responders (SR) (n=28; reduction in LVESV ≥ 30%) and non-SR (n=32; reduction in LVESV < 30%). Results: At baseline groups differed in age (58.1 ± 5.8 years in SR vs 50.8 ± 11.4 years in non-SR; p=0.003), gender (female gender 32.1% vs 9.4% respectively; p=0.028), width of QRS complex (157.6 ± 40.6 ms in SR vs 137.6 ± 33.9 ms in non-SR; p=0.044). Percentage of LBBB was equal between groups (75% in SR vs 59.4% in non-SR; p=0.274). All parameters of mechanical dyssynchrony were higher in SR, but only difference in left ventricular pre-ejection period (LVPEP) was statistically significant (153.0 ± 35.9 ms vs. 129.3 ± 28.7 ms p=0.032). NT-proBNP level was lower in SR (1581 ± 1369 pg/ml vs 3024 ± 2431 pg/ml; p=0.006). The survival rates were 100% in SR and 90.6% in non-SR (log-rank test P=0.002). Multiple logistic regression analysis showed that LVPEP (HR 1.024; 95% CI 1.004–1.044; P = 0.017), baseline NT-proBNP level (HR 0.628; 95% CI 0.414–0.953; P=0.029) and age at baseline (HR 1.094; 95% CI 1.009-1.168; P=0.30) were independent predictors for CRT super-response. ROC curve analysis demonstrated sensitivity 71.9% and specificity 82.1% (AUC=0.827; p < 0.001) of this model in prediction of super-response to CRT. Conclusion: Super-response to CRT is associated with better survival in long-term period. Presence of LBBB was not associated with super-response. LVPEP, NT-proBNP level, and age at baseline can be used as independent predictors of CRT super-response.

Keywords: cardiac resynchronisation therapy, superresponse, congestive heart failure, left bundle branch block

Procedia PDF Downloads 375
688 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal

Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel

Abstract:

There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.

Keywords: egg quality, immunity, layers, performance

Procedia PDF Downloads 204
687 Environmental Potential of Biochar from Wood Biomass Thermochemical Conversion

Authors: Cora Bulmău

Abstract:

Soil polluted with hydrocarbons spills is a major global concern today. As a response to this issue, our experimental study tries to put in evidence the option to choose for one environmentally friendly method: use of the biochar, despite to a classical procedure; incineration of contaminated soil. Biochar represents the solid product obtained through the pyrolysis of biomass, its additional use being as an additive intended to improve the quality of the soil. The positive effect of biochar addition to soil is represented by its capacity to adsorb and contain petroleum products within its pores. Taking into consideration the capacity of the biochar to interact with organic contaminants, the purpose of the present study was to experimentally establish the effects of the addition of wooden biomass-derived biochar on a soil contaminated with oil. So, the contaminated soil was amended with biochar (10%) produced by pyrolysis in different operational conditions of the thermochemical process. After 25 days, the concentration of petroleum hydrocarbons from soil treated with biochar was measured. An analytical method as Soxhlet extraction was adopted to estimate the concentrations of total petroleum products (TPH) in the soil samples: This technique was applied to contaminated soil, also to soils remediated by incineration/adding biochar. The treatment of soil using biochar obtained from pyrolysis of the Birchwood led to a considerable decrease in the concentrations of petroleum products. The incineration treatments conducted under experimental stage to clean up the same soil, contaminated with petroleum products, involved specific parameters: temperature of about 600°C, 800°C and 1000°C and treatment time 30 and 60 minutes. The experimental results revealed that the method using biochar has registered values of efficiency up to those of all incineration processes applied for the shortest time.

Keywords: biochar, biomass, remediaton, soil, TPH

Procedia PDF Downloads 213
686 Using Environmental Life Cycle Assessment to Design Sustainable Packaging

Authors: Timothy Francis Grant

Abstract:

There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency.

Keywords: Climate change, Life Cycle Assessment, Marine litter, Packaging sustainability

Procedia PDF Downloads 109
685 Biofuel Production via Thermal Cracking of Castor Methyl Ester

Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli

Abstract:

Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.

Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification

Procedia PDF Downloads 219
684 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka

Abstract:

Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.

Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal

Procedia PDF Downloads 271
683 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 67
682 Bias-Corrected Estimation Methods for Receiver Operating Characteristic Surface

Authors: Khanh To Duc, Monica Chiogna, Gianfranco Adimari

Abstract:

With three diagnostic categories, assessment of the performance of diagnostic tests is achieved by the analysis of the receiver operating characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic outcomes. The volume under the ROC surface (VUS) is a summary index usually employed for measuring the overall diagnostic accuracy. When the true disease status can be exactly assessed by means of a gold standard (GS) test, unbiased nonparametric estimators of the ROC surface and VUS are easily obtained. In practice, unfortunately, disease status verification via the GS test could be unavailable for all study subjects, due to the expensiveness or invasiveness of the GS test. Thus, often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic accuracy based only on data from subjects with verified disease status are typically biased. This bias is known as verification bias. Here, we consider the problem of correcting for verification bias when continuous diagnostic tests for three-class disease status are considered. We assume that selection for disease verification does not depend on disease status, given test results and other observed covariates, i.e., we assume that the true disease status, when missing, is missing at random. Under this assumption, we discuss several solutions for ROC surface analysis based on imputation and re-weighting methods. In particular, verification bias-corrected estimators of the ROC surface and of VUS are proposed, namely, full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators. Consistency and asymptotic normality of the proposed estimators are established, and their finite sample behavior is investigated by means of Monte Carlo simulation studies. Two illustrations using real datasets are also given.

Keywords: imputation, missing at random, inverse probability weighting, ROC surface analysis

Procedia PDF Downloads 399
681 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options

Authors: Wajih Abbassi, Zouhaier Ben Khelifa

Abstract:

The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.

Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options

Procedia PDF Downloads 409
680 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 113
679 Diagnostic and Prognostic Use of Kinetics of Microrna and Cardiac Biomarker in Acute Myocardial Infarction

Authors: V. Kuzhandai Velu, R. Ramesh

Abstract:

Background and objectives: Acute myocardial infarction (AMI) is the most common cause of mortality and morbidity. Over the last decade, microRNAs (miRs) have emerged as a potential marker for detecting AMI. The current study evaluates the kinetics and importance of miRs in the differential diagnosis of ST-segment elevated MI (STEMI) and non-STEMI (NSTEMI) and its correlation to conventional biomarkers and to predict the immediate outcome of AMI for arrhythmias and left ventricular (LV) dysfunction. Materials and Method: A total of 100 AMI patients were recruited for the study. Routine cardiac biomarker and miRNA levels were measured during diagnosis and serially at admission, 6, 12, 24, and 72hrs. The baseline biochemical parameters were analyzed. The expression of miRs was compared between STEMI and NSTEMI at different time intervals. Diagnostic utility of miR-1, miR-133, miR-208, and miR-499 levels were analyzed by using RT-PCR and with various diagnostics statistical tools like ROC, odds ratio, and likelihood ratio. Results: The miR-1, miR-133, and miR-499 showed peak concentration at 6 hours, whereas miR-208 showed high significant differences at all time intervals. miR-133 demonstrated the maximum area under the curve at different time intervals in the differential diagnosis of STEMI and NSTEMI which was followed by miR-499 and miR-208. Evaluation of miRs for predicting arrhythmia and LV dysfunction using admission sample demonstrated that miR-1 (OR = 8.64; LR = 1.76) and miR-208 (OR = 26.25; LR = 5.96) showed maximum odds ratio and likelihood respectively. Conclusion: Circulating miRNA showed a highly significant difference between STEMI and NSTEMI in AMI patients. The peak was much earlier than the conventional biomarkers. miR-133, miR-208, and miR-499 can be used in the differential diagnosis of STEMI and NSTEMI, whereas miR-1 and miR-208 could be used in the prediction of arrhythmia and LV dysfunction, respectively.

Keywords: myocardial infarction, cardiac biomarkers, microRNA, arrhythmia, left ventricular dysfunction

Procedia PDF Downloads 111
678 Electrocatalysts for Lithium-Sulfur Energy Storage Systems

Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund

Abstract:

Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.

Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials

Procedia PDF Downloads 347
677 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 173
676 Local Cultural Beliefs and Practices of the Indiginous Communities Related to Wildlife in the Buffer Zone of Chitwan National Park

Authors: Neeta Pokharel

Abstract:

Cultural beliefs and practices have been shaping indigenous community’s resource use and attitude toward the conservation of natural flora and fauna around them. Understanding these cultural dimensions is vital for identifying effective strategies that align with conservation efforts. This study focused on investigating the wildlife-related cultural beliefs and practices of two indigenous communities: Bote and Musahars. The study applied ethnographic methods that included Key-informant interviews, Focal Group discussion, and Household survey methods. Out of 100 respondents, 51% were male and 49% female. A significant portion (65%) of the respondents confirmed animal worship, with a majority worshipping tigers (81.5%), rhinos (73.8%), crocodiles (66%), and dolphins (40%). Additionally, 16.9% disclosed worshipping Elephants, while 10 % affirmed animal worship without specifying the particular animals. Ritualistic practices often involve the sacrifice of pigs, goats, hens, and pigeons. Their cultural ethics place a significant emphasis on biodiversity conservation, as the result shows 41 % refraining from causing harm to wild animals and 9% doing so for ethical considerations, respectively. Moreover, the majority of the respondents believe that cultural practices could enhance conservation efforts. However, the encroachment of modernization and religious conversion within the community poses a tangible risk of cultural degradation, highlighting the urgent need to preserve the cultural practices. Integrating such indigenous practices into the National Biodiversity Strategy and conservation policies can ensure sustainable conservation of endangered animals with appropriate cultural safeguards.

Keywords: tribal communities, societal belief, wild fauna, “barana”, safeguarding

Procedia PDF Downloads 60
675 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy

Authors: Surabhi Pandey, Pavuluri Srinivasa Rao

Abstract:

Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.

Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method

Procedia PDF Downloads 137
674 Reduced Glycaemic Impact by Kiwifruit-Based Carbohydrate Exchanges Depends on Both Available Carbohydrate and Non-Digestible Fruit Residue

Authors: S. Mishra, J. Monro, H. Edwards, J. Podd

Abstract:

When a fruit such as kiwifruit is consumed its tissues are released from the physical /anatomical constraints existing in the fruit. During digestion they may expand several-fold to achieve a hydrated solids volume far greater than the original fruit, and occupy the available space in the gut, where they surround and interact with other food components. Within the cell wall dispersion, in vitro digestion of co-consumed carbohydrate, diffusion of digestion products, and mixing responsible for mass transfer of nutrients to the gut wall for absorption, were all retarded. All of the foregoing processes may be involved in the glycaemic response to carbohydrate foods consumed with kiwifruit, such as breakfast cereal. To examine their combined role in reducing the glycaemic response to wheat cereal consumed with kiwifruit we formulated diets containing equal amounts of breakfast cereal, with the addition of either kiwifruit, or sugars of the same composition and quantity as in kiwifruit. Therefore, the only difference between the diets was the presence of non-digestible fruit residues. The diet containing the entire disperse kiwifruit significantly reduced the glycaemic response amplitude and the area under the 0-120 min incremental blood glucose response curve (IAUC), compared with the equicarbohydrate diet containing the added kiwifruit sugars. It also slightly but significantly increased the 120-180 min IAUC by preventing a postprandial overcompensation, indicating improved homeostatic blood glucose control. In a subsequent study in which we used kiwifruit in a carbohydrate exchange format, in which the kiwifruit carbohydrate partially replaced breakfast cereal in equal carbohydrate meals, the blood glucose was further reduced without a loss of satiety, and with a reduction in insulin demand. The results show that kiwifruit may be a valuable component in low glycaemic impact diets.

Keywords: carbohydrate, digestion, glycaemic response, kiwifruit

Procedia PDF Downloads 477
673 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods

Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho

Abstract:

Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.

Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator

Procedia PDF Downloads 143
672 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms

Authors: Ramin Mansouri

Abstract:

Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.

Keywords: reservoirs, differential evolution, dam, Optimal operation

Procedia PDF Downloads 60
671 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 356
670 Convertible Lease, Risky Debt and Financial Structure with Growth Option

Authors: Ons Triki, Fathi Abid

Abstract:

The basic objective of this paper is twofold. It resides in designing a model for a contingent convertible lease contract that can ensure the financial stability of a company and recover the losses of the parties to the lease in the event of default. It also aims to compare the convertible lease contract on inefficiencies resulting from the debt-overhang problem and asset substitution with other financing policies. From this perspective, this paper highlights the interaction between investments and financing policies in a dynamic model with existing assets and a growth option where the investment cost is financed by a contingent convertible lease and equity. We explore the impact of the contingent convertible lease on the capital structure. We also check the reliability and effectiveness of the use of the convertible lease contract as a means of financing. Findings show that the rental convertible contract with a sufficiently high conversion ratio has less severe inefficiencies arising from risk-shifting and debt overhang than those entailed by risky debt and pure-equity financing. The problem of underinvestment pointed out by Mauer and Ott (2000) and the problem of overinvestment mentioned by Hackbarth and Mauer (2012) may be reduced under contingent convertible lease financing. Our findings predict that the firm value under contingent convertible lease financing increases globally with asset volatility instead of decreasing with business risk. The study reveals that convertible leasing contracts can stand for a reliable solution to ensure the lessee and quickly recover the counterparties of the lease upon default.

Keywords: contingent convertible lease, growth option, debt overhang, risk-shifting, capital structure

Procedia PDF Downloads 55
669 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 60
668 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 268
667 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 81
666 Preceramic Polymers Formulations for Potential Additive Manufacturing

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.

Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10

Procedia PDF Downloads 107
665 Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress

Authors: Desierin Rodrin, Magdalena Alcantara, Cristina Olo

Abstract:

The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers.

Keywords: broiler growth performance, heat stress, vitamin supplementation, vitamin A, vitamin C, vitamin E

Procedia PDF Downloads 275