Search results for: orbital hall current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8965

Search results for: orbital hall current

8965 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 17
8964 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current

Authors: Hyungil Chae

Abstract:

This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).

Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current

Procedia PDF Downloads 455
8963 The Current And Prospective Legal Regime of Non-Orbital Flights

Authors: Olga Koutsika

Abstract:

The paper deals primarily with the question of the legal framework of non-orbital flights. The submission is based upon two pillars, starting with the ill-defined current legal regime and proceeding to further recommendations for the prospective legal regime for non-orbital flights. For this reason, the paper focuses on certain key legal aspects of the topic, including among other things liability, responsibility, jurisdiction, registration and authorisation. Furthermore, taking into consideration the hybrid nature of both the craft conducting non-orbital flights and of the flights themselves, which exit airspace but do not enter an orbit in outer space, the paper addresses each legal question from the perspective of both air law and space law and concludes to a number of recommendations regarding the applicability of each legal regime for each legal question individually.

Keywords: current regime, legal framework, non-orbital flights, prospective regime

Procedia PDF Downloads 355
8962 Analysis of Vertical Hall Effect Device Using Current-Mode

Authors: Kim Jin Sup

Abstract:

This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology

Procedia PDF Downloads 268
8961 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 276
8960 Variation in Orbital Elements of Mars and Jupiter Due to the Sun Oblateness by Using Secular Theory

Authors: Avaneesh Vaishwar, Badam Singh Kushvah, Devi Prasad Mishra

Abstract:

We studied the variation in orbital elements of Mars and Jupiter for a time span of 200 thousand years by using secular theory. Here we took Sun oblateness into account and considered the first two zonal gravity constants (J2 and J4) for showing the effect of Sun oblateness on the orbital elements of Mars and Jupiter. We found that in both cases (with and without Sun oblateness) the variation in orbital elements of Mars and Jupiter is periodic moreover in case of the Sun oblateness, the period of variation in orbital elements is decreasing for both the planets.

Keywords: lagrange's planetary equation, orbital elements, planetary system, secular theory

Procedia PDF Downloads 192
8959 A CMOS-Integrated Hall Plate with High Sensitivity

Authors: Jin Sup Kim, Min Seo

Abstract:

An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.

Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil

Procedia PDF Downloads 170
8958 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 492
8957 Radiologic Assessment of Orbital Dimensions Among Omani Subjects: Computed Tomography Imaging-Based Study

Authors: Marwa Al-Subhi, Eiman Al-Ajmi, Mallak Al-Maamari, Humood Al-Dhuhli, Srinivasa Rao

Abstract:

The orbit and its contents are affected by various pathologies and craniofacial anomalies. Sound knowledge of the normal orbital dimensions is clinically essential for successful surgical outcomes and also in the field of forensic anthropology. Racial, ethnic, and regional variations in the orbital dimensions have been reported. This study sought to determine the orbital dimensions of Omani subjects who had been referred for computed tomography (CT) images at a tertiary care hospital. A total of 273 patients’ CT images were evaluated retrospectively by using an electronic medical records database. The orbital dimensions were recorded using both axial and sagittal planes of CT images. The mean orbital index (OI) was found to be 83.25±4.83 and the prevalent orbital type was categorized as mesoseme. The mean orbital index was 83.34±5.05 and 83.16±4.57 in males and females, respectively, with their difference being statistically not significant (p=0.76). A statistically significant association was observed between the right and left orbits with regard to horizontal distance (p<0.05) and vertical distance (p<0.01) of orbit and OI (p<0.05). No significant difference between the OI and age groups was observed in both males and females. The mean interorbital distance and interzygomatic distance were found to be 19.45±1.52 mm and 95.59±4.08 mm, respectively. Both of these parameters were significantly higher in males (p<0.05). Results of the present study provide reference values of orbital dimensions in Omani subjects. The prevalent orbital type of Omani subjects is mesoseme, which is a hallmark of the white race.

Keywords: orbit, orbital index, mesoseme, ethnicity, variation

Procedia PDF Downloads 126
8956 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 652
8955 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement

Authors: Young-San Shin, Seongsoo Lee

Abstract:

Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.

Keywords: hall sensor, angle measurement, lookup table, arctangent

Procedia PDF Downloads 317
8954 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods

Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho

Abstract:

Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.

Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator

Procedia PDF Downloads 139
8953 Calculation of Orbital Elements for Sending Interplanetary Probes

Authors: Jorge Lus Nisperuza Toledo, Juan Pablo Rubio Ospina, Daniel Santiago Umana, Hector Alejandro Alvarez

Abstract:

This work develops and implements computational codes to calculate the optimal launch trajectories for sending a probe from the earth to different planets of the Solar system, making use of trajectories of the Hohmann and No-Hohmann type and gravitational assistance in intermediate steps. Specifically, the orbital elements, the graphs and the dynamic simulations of the trajectories for sending a probe from the Earth towards the planets Mercury, Venus, Mars, Jupiter, and Saturn are obtained. A detailed study was made of the state vectors of the position and orbital velocity of the considered planets in order to determine the optimal trajectories of the probe. For this purpose, computer codes were developed and implemented to obtain the orbital elements of the Mariner 10 (Mercury), Magellan (Venus), Mars Global Surveyor (Mars) and Voyager 1 (Jupiter and Saturn) missions, as an exercise in corroborating the algorithms. This exercise gives validity to computational codes, allowing to find the orbital elements and the simulations of trajectories of three future interplanetary missions with specific launch windows.

Keywords: gravitational assistance, Hohmann’s trajectories, interplanetary mission, orbital elements

Procedia PDF Downloads 157
8952 Yarkovsky Effect on the Orbital Dynamics of the Asteroid (101955) Bennu

Authors: Sanjay Narayan Deo, Badam Singh Kushvah

Abstract:

Bennu(101955) is a half kilometer potentially hazardous near-Earth asteroid. We analyze the influence of Yarkovsky effect and relativistic effect of the Sun on the motion of the asteroid Bennu. The transverse model is used to compute Yarkovsky force on asteroid Bennu. Our dynamical model includes Newtonian perturbations of eight planets, the Moon, the Sun and three massive asteroid (1Ceres, 2Palas and 4Vesta). We showed the variation in orbital elements of nominal orbit of the asteroid. In the presence of Yarkovsky effect, the Semi-major axis of the orbit of the asteroid is decreases by 350 m over one period of orbital motion. The magnitude of Yarkovsky force is computed. We find that maximum magnitude of Yarkovsky force is 0.09 N at the perihelion . We also found that the magnitude of the Sun relativity effect is greater than the Yarkovsky effect on the motion the asteroid Bennu.

Keywords: Bennu, orbital elements, relativistic effect, Yarkovsky effect

Procedia PDF Downloads 270
8951 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 243
8950 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2

Authors: Satyabrata Bera, Mintu Mondal

Abstract:

Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.

Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature

Procedia PDF Downloads 48
8949 Some Aspects on Formation Initialization and Its Maintenance of Leo Satellites

Authors: Y. Johnson

Abstract:

Study of multi-satellite formation flight systems has drawn wide attention recently due to so many potential advantages. The present work aims to model the relative motion dynamics in terms of change in classical orbital parameters between the two satellites-chief and deputy- under Earth’s oblateness effect. The required impulsive thrust control is calculated to minimize these orbital parameter changes. The formation configuration is initialized by selecting a set of orbital parameters for the chief and deputy satellites such that bounded motion is maintained for a long time in a J_2-invariant relative non-circular orbit between the satellites. The solution of J_2-modified Hill’s equations is also derived in this paper.

Keywords: satellite, formation flight, j2 effect, control

Procedia PDF Downloads 250
8948 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System

Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez

Abstract:

In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.

Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1

Procedia PDF Downloads 162
8947 Resistive Instability in a Multi Ions Hall Thrusters Plasma

Authors: Sukhmander Singh

Abstract:

Hall thrusters are preferred over chemical thrusters because of its high exhaust velocity (around 10 times higher) and high specific impulse. The propellant Xenon is ionized inside the channel and controlled by the magnetic field. The strength of the magnetic field is such that only electrons get magnetized and ions remain unmagnetized because of larger Larmor radius as compared with the length of the channel of the device. There is quite a possibility of the existence of multi ions in a Hall thruster plasma because of dust contribution or another process which take place in the chamber. In this paper, we have derived the dispersion relation for multi ions resistive instability in a hall plasma. The analytical approach is also used to find out the propagating speed and the growth rate of the instability. In addition, some growing waves are also found to exist in the plasma. The dispersion relation is solved numerically to see the behavior of the instability with the plasma parameters viz, the temperature of plasma species, wave number, drift velocity, collision frequency, magnetic field.

Keywords: instability, resisitive, thrusters, waves

Procedia PDF Downloads 288
8946 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 56
8945 Analysis of the Physical Behavior of Library Users in Reading Rooms through GIS: A Case Study of the Central Library of Tehran University

Authors: Roya Pournaghi

Abstract:

Measuring the extent of daily use of the libraries study space is of utmost significance in order to develop, re-organize and maintain the efficiency of the study space. The current study aimed to employ GIS in analyzing the study halls space of the document center and central library of Tehran University and determine the extent of use of the study chairs and desks by the students-intended users. This combination of survey methods - descriptive design system. In order to collect the required data and a description of the method, To implement and entering data into ArcGIS software. It also analyzes the data and displays the results on the library floor map design method were used. And spatial database design and plan has been done at the Central Library of Tehran University through the amount of space used by members of the Library and Information halls plans. Results showed that Biruni's hall is allocated the highest occupancy rate to tables and chairs compared to other halls. In the Hall of Science and Technology, with an average occupancy rate of 0.39 in the tables represents the lowest users and Rashid al-Dins hall, and Science and Technology’s hall with an average occupancy rate (0.40) represents the lowest users of seats. In this study, the comparison of the space is occupied at different period as a study’s hall in the morning, evenings, afternoons, and several months was performed through GIS. This system analyzed the space relationship effectively and efficiently. The output of this study can be used by administrators and librarians to determine the exact amount of using the Equipment of study halls and librarians can use the output map to design more efficient space at the library.

Keywords: geospatial information system, spatial analysis, reading room, academic libraries, library’s user, central library of Tehran university

Procedia PDF Downloads 207
8944 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 188
8943 Long Standing Orbital Floor Fracture Repair: Case Report

Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed

Abstract:

A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.

Keywords: diplopia, dystopia, late surgery, orbital floor fracture

Procedia PDF Downloads 208
8942 Study and Evaluation of Occupational Health and Safety in Power Plant in Pakistan

Authors: Saira Iqbal

Abstract:

Occupational Health and Safety issues nowadays have become an important esteem in the context of Industrial Production. This study is designed to measure the workplace hazards at Kohinoor Energy Limited. Mainly focused hazards were Heat Stress, Noise Level, Light Level and Ergonomics. Measurements for parameters like Wet, Dry, Globe, WBGTi and RH% were taken directly by visiting the Study Area. The temperature in Degrees was recoded at Control Room and Engine Hall. Highest Temperature was recoded in Engine Hall which was about 380C. Efforts were made to record emissions of Noise Levels from the main area of concern like Engines in Engine hall, parking area, and mechanical workshop. Permissible level for measuring Noise is 85 and its Unit of Measurement is dB (A). In Engine Hall Noise was very high which was about 109.6 dB (A) and that level was exceeding the limits. Illumination Level was also recorded at different areas of Power Plant. The light level was though under permissible limits but in some areas like Engine Hall and Boiler Room, level of light was very low especially in Engine Hall where the level was 29 lx. Practices were performed for measuring hazards in context of ergonomics like extended reaching, deviated body postures, mechanical stress, and vibration exposures of the worker at different units of plants by just observing workers during working hours. Since KEL is ISO 8000 and 14000 certified, the researcher found no serious problems in the parameter Ergonomics however it was a common scenario that workers were reluctant to apply PPEs.

Keywords: workplace hazards, heat hazard, noise hazard, illumination, ergonomics

Procedia PDF Downloads 297
8941 Analysis the Trajectory of the Spacecraft during the Transition to the Planet's Orbit Using Aerobraking in the Atmosphere of the Planet

Authors: Zaw Min Tun

Abstract:

The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere.

Keywords: aerobraking, atmosphere of the planet, orbital transition time, Spacecraft’s trajectory

Procedia PDF Downloads 279
8940 Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for Fluorous Compounds: C13H12F7ClN2O

Authors: Shahriar Ghammamy, Masomeh Shahsavary

Abstract:

In this paper, the optimized geometries and frequencies of the stationary point and the minimum energy paths of C13H12F7ClN2O are calculated by using the DFT (B3LYP) methods with LANL2DZ basis sets. B3LYP/ LANL2DZ calculation results indicated that some selected bond length and bond angles values for the C13H12F7ClN2O.

Keywords: C13H12F7ClN2O, vatural bond orbital, fluorous compounds, functional calculations

Procedia PDF Downloads 301
8939 High Voltage Magnetic Pulse Generation Using Capacitor Discharge Technique

Authors: Mohamed Adel Abdallah

Abstract:

A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate a pulse current. Switching circuit consisting of DPDT switches, thyristor, and triggering circuit is built and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse created is measured and tabulated in the graph. Simulation using FEMM is done to compare the results obtained between experiment and simulation. This technology can be applied to area such as medical equipment, measuring instrument, and military equipment.

Keywords: high voltage, magnetic pulse, capacitor discharge, coil

Procedia PDF Downloads 652
8938 Short-Term Operation Planning for Energy Management of Exhibition Hall

Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.

Keywords: exhibition hall, energy management, predictive model, simulation-based optimization

Procedia PDF Downloads 312
8937 Pilomatrixoma of the Left Infra-Orbital Region in a 9 Year Old

Authors: Zainab Shaikh, Yusuf Miyanji

Abstract:

Pilomatrixoma is a benign neoplasm of the hair follicle matrix that is not commonly diagnosed in general practice. This is a case report of a 9-year-old boy who presented with a one-year history of a 19mm x 11 mm swelling in the left infra-orbital region. This was previously undiagnosed in Spain, where the patient resided at the time of initial presentation, due to the language barrier the patient’s family encountered. An ultrasound and magnetic resonance imaging gave useful information regarding surrounding structures for complete tumor excision and indicated that the risk of facial nerve palsy is low. The lesion was surgically excised and a definitive diagnosis was made after histopathology. Pilomatrixoma, although not rare in its occurrence, is rarely this large at the time of excision due to early presentation. This case highlights the importance of including pilomatrixoma in the differential diagnosis of dermal and subcutaneous lesions in the head and neck region, as it is often misdiagnosed due to the lack of awareness of its clinical presentation.

Keywords: pilomatrixoma, swelling, infra-orbital, facial swelling

Procedia PDF Downloads 115
8936 Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report

Authors: Eghosa Morgan, Bourtarbouch Mahjouba, Heida El Ouahabi, Poluyi Edward, Diawarra Seylan

Abstract:

Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy.

Keywords: central nervous system (CNS), meningioma, non-aids lymphoma, orbital

Procedia PDF Downloads 66