Search results for: abnormal activity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9846

Search results for: abnormal activity detection

8316 Investigation on Morphologies, Forming Mechanism, Photocatalytic and Electronic Properties of Co-Zn Ferrite Nanostructure Grown on the Reduced Graphene Oxide Support

Authors: Qinglei Liu, Ali Charkhesht, Tiva Sharifi, Ashkan Bahadoran

Abstract:

Graphene sheets are promising nanoscale building blocks as a support material for the dispersion of nanoparticles. In this work, a solvothermal method employed to directly grow Co1-xZnxFe2O4 ferrite nanospheres on graphene oxide support that is subsequently reduced to graphene. The samples morphology, structure and crystallography were investigated using field-emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (XRD). The influences of the Zn2+ content on photocatalytic activity, electrical conductivity and magnetic property of the samples are also investigated. The results showed that Co1-x Znx Fe2 O4 nanoparticles are dispersed on graphene sheets and obtained nanocomposites are soft magnetic materials. In addition the samples showed excellent photocatalytic activity under visible light irradiation.

Keywords: reduced graphene oxide, ferrite, magnetic nanocomposite, photocatalytic activity, solvothermal method

Procedia PDF Downloads 250
8315 Duplex Real-Time Loop-Mediated Isothermal Amplification Assay for Simultaneous Detection of Beef and Pork

Authors: Mi-Ju Kim, Hae-Yeong Kim

Abstract:

Product mislabeling and adulteration have been increasing the concerns in processed meat products. Relatively inexpensive pork meat compared to meat such as beef was adulterated for economic benefit. These food fraud incidents related to pork were concerned due to economic, religious and health reasons. In this study, a rapid on-site detection method using loop-mediated isothermal amplification (LAMP) was developed for the simultaneous identification of beef and pork. Each specific LAMP primer for beef and pork was designed targeting on mitochondrial D-loop region. The LAMP assay reaction was performed at 65 ℃ for 40 min. The specificity of each primer for beef and pork was evaluated using DNAs extracted from 13 animal species including beef and pork. The sensitivity of duplex LAMP assay was examined by serial dilution of beef and pork DNAs, and reference binary mixtures. This assay was applied to processed meat products including beef and pork meat for monitoring. Each set of primers amplified only the targeted species with no cross-reactivity with animal species. The limit of detection of duplex real-time LAMP was 1 pg for each DNA of beef and pork and 1% pork in a beef-meat mixture. Commercial meat products that declared the presence of beef and/or pork meat on the label showed positive results for those species. This method was successfully applied to detect simultaneous beef and pork meats in processed meat products. The optimized duplex LAMP assay can identify simultaneously beef and pork meat within less than 40 min. A portable real-time fluorescence device used in this study is applicable for on-site detection of beef and pork in processed meat products. Thus, this developed assay was considered to be an efficient tool for monitoring meat products.

Keywords: beef, duplex real-time LAMP, meat identification, pork

Procedia PDF Downloads 225
8314 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 75
8313 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 271
8312 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 115
8311 Antioxidant Activity of Probiotic Lactic Acid Bacteria and Their Application in Fermented Milk Products

Authors: Vitheejongjaroen P., Jaisin Y., Pachekrepapol U., Taweechotipatr M.

Abstract:

Lactic acid bacteria (LAB) are the most common type of microorganisms that had been used as probiotics also known for many beneficial health effects. The antioxidant activity of LAB is associated with numerous health-protective effects. This research aimed to investigate the antioxidant activity of lactic acid bacteria isolated from Thai sour pork sausage for their application in fermented milk products. Antioxidant activity determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed that the isolate FN33-7, as 1 of 8 isolated exhibited scavenging activity in intact cell 5-7%, and supernatant 13-16%, intracellular cell free extract 42-48% respectively. This isolate was identified using 16S ribosomal DNA sequence analysis as Lactobacillus plantarum. The effect of milk fermented with L. plantarum FN33-7 on microbial count, pH and syneresis was assessed during refrigerated storage period of 28 days. The strain showed increased viability, pH level decreased, while syneresis increased. These results are similar to dairy products fermented with commercial starter cultures. Additionally, microstructure analysis of fermented milk by fluorescent microscopy showed that curd structure appeared to be dense and less porous in this fermented milk than commercial yogurt. The results of this study indicated that L. plantarum FN33-7 was a good probiotic candidate to be used in cultured milk products to reduce the risk of diseases caused by oxidative stress.

Keywords: Lactobacillus plantarum, probiotics, free radical, antioxidant, oxidative stress, fermented milk products

Procedia PDF Downloads 132
8310 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 81
8309 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 121
8308 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods

Authors: Fatih Tarlak

Abstract:

Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.

Keywords: shelf-life, growth model, predictive microbiology, simulation

Procedia PDF Downloads 214
8307 Determination of the Thermally Comfortable Air Temperature with Consideration of Individual Clothing and Activity as Preparation for a New Smart Home Heating System

Authors: Alexander Peikos, Carole Binsfeld

Abstract:

The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in such a living space. In addition to the usual physical factors (air temperature, humidity, air velocity, and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined with a Radio Frequency Identification system. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but still require further research and extensive evaluation.

Keywords: smart home, thermal comfort, predicted mean vote, radio frequency identification

Procedia PDF Downloads 159
8306 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection

Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya

Abstract:

Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.

Keywords: carbon nanotubes network, biosensor, human serum albumin

Procedia PDF Downloads 137
8305 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 153
8304 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
8303 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 124
8302 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
8301 Associations between Physical Activity and Risk Factors for Type II Diabetes in Prediabetic Adults

Authors: Rukia Yosuf

Abstract:

Diabetes is a national healthcare crisis related to both macrovascular and microvascular complications. We hypothesized that higher levels of physical activity are associated with lower total and visceral fat mass, lower systolic blood pressure, and increased insulin sensitivity. Participant inclusion criteria: 21-50 years old, BMI ≥ 30 kg/m2, hemoglobin A1C 5.7-6.4, fasting glucose 100-125 mg/dL, and HOMA IR ≥ 2.5. Exclusion criteria: history of diabetes, hypertension, HIV, renal disease, hearing loss, alcoholic intake over four drinks daily, use of organic nitrates or PDE5 inhibitors, and decreased cardiac function. Total physical activity was measured using accelerometers, body composition using DXA, and insulin resistance via fsIVGTT. Clinical and biochemical cardiometabolic risk factors, blood pressure and heart rate were obtained using a calibrated sphygmomanometer. Anthropometric measures, fasting glucose, insulin, lipid profile, C-reactive protein, and BMP were analyzed using standard procedures. Within our study, we found correlations between levels of physical activity in a heterogeneous group of prediabetic adults. Patients with more physical activity had a higher degree of insulin sensitivity, lower blood pressure, total visceral adipose tissue, and overall lower total mass. Total physical activity levels showed small, but significant correlations with systolic blood pressure, visceral fat, lean mass and insulin sensitivity. After normalizing for the race, age, and gender using multiple regression, these associations were no longer significant considering our small sample size. More research into prediabetes will decrease the population of diabetics overall. In the future, we could increase sample size and conduct cross sectional and longitudinal studies in various populations with prediabetes.

Keywords: diabetes, kidney disease, nephrology, prediabetes

Procedia PDF Downloads 187
8300 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 258
8299 Antioxidant Activity of Aristolochia longa L. Extracts

Authors: Merouani Nawel, Belhattab Rachid

Abstract:

Aristolochia longa L. (Aristolochiacea) is a native plant of Algeria used in traditional medicine. This study was devoted to the determination of polyphenols, flavonoids, and condensed tannins contents of Aristolochia longa L. after their extraction by using various solvents with different polarities (methanol, acetone and distilled water). These extracts were prepared from stem, leaves, fruits and rhizome. The antioxidant activity was determined using three in vitro assays methods: scavenging effect on DPPH, the reducing power assay and ẞ-carotene bleaching inhibition (CBI). The results obtained indicate that the acetone extracts from the aerial parts presented the highest contents of polyphenols. The results of The antioxidant activity showed that all extracts of Aristolochia longa L., prepared using different solvent, have diverse antioxidant capacities. However, the aerial parts methanol extract exhibited the highest antioxidant capacity of DPPH and reducing power (Respectively 55,04ug/ml±1,29 and 0,2 mg/ml±0,019 ). Nevertheless, the aerial parts acetone extract showed the highest antioxidant capacity in the test of ẞ-carotene bleaching inhibition with 57%. These preliminary results could be used to justify the traditional use of this plant and their bioactive substances could be exploited for therapeutic purposes such as antioxidant and antimicrobial.

Keywords: aristolochia longa l., polyphenols, flavonoids, condensed tannins, antioxidant activity

Procedia PDF Downloads 252
8298 Determination of Antioxidant Activity in Raphanus raphanistrum L.

Authors: Esma Hande Alıcı, Gülnur Arabacı

Abstract:

Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.

Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish

Procedia PDF Downloads 277
8297 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus

Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai

Abstract:

The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.

Keywords: Staphylococcus aureus, Escherichia coli, Phellinus linteus, Methicillin-resistant Staphylococcus aureus, antimicrobial activity

Procedia PDF Downloads 287
8296 The Impact of Trait and Mathematical Anxiety on Oscillatory Brain Activity during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatyana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Yulia V. Kovas

Abstract:

The present study compared spectral-power indexes and cortical topography of brain activity in a sample characterized by different levels of trait and mathematical anxiety. 52 healthy Russian-speakers (age 17-32; 30 males) participated in the study. Participants solved an error recognition task under 3 conditions: A lexical condition (simple sentences in Russian), and two numerical conditions (simple arithmetic and complicated algebraic problems). Trait and mathematical anxiety were measured using self-repot questionnaires. EEG activity was recorded simultaneously during task execution. Event-related spectral perturbations (ERSP) were used to analyze spectral-power changes in brain activity. Additionally, sLORETA was applied in order to localize the sources of brain activity. When exploring EEG activity recorded after tasks onset during lexical conditions, sLORETA revealed increased activation in frontal and left temporal cortical areas, mainly in the alpha/beta frequency ranges. When examining the EEG activity recorded after task onset during arithmetic and algebraic conditions, additional activation in delta/theta band in the right parietal cortex was observed. The ERSP plots reveled alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three (lexical, arithmetic and algebraic) conditions. The level of trait anxiety was positively correlated with the amplitude of alpha/beta desynchronization. The level of mathematical anxiety was negatively correlated with the amplitude of theta synchronization and of alpha/beta desynchronization. Overall, trait anxiety was related with an increase in brain activation during task execution, whereas mathematical anxiety was associated with increased inhibitory-related activity. We gratefully acknowledge the support from the №11.G34.31.0043 grant from the Government of the Russian Federation.

Keywords: anxiety, EEG, lexical and numerical error-recognition tasks, alpha/beta desynchronization

Procedia PDF Downloads 526
8295 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data

Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi

Abstract:

Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.

Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method

Procedia PDF Downloads 155
8294 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters

Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang

Abstract:

Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.

Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology

Procedia PDF Downloads 69
8293 Aspergillus micromycetes as Producers of Hemostatically Active Proteases

Authors: Alexander A. Osmolovskiy, Anastasia V. Orekhova, Daria M. Bednenko, Yelyzaveta Boiko

Abstract:

Micromycetes from Aspergillus genus can produce proteases capable of promoting proteolysis of hemostasis proteins or, along with hydrolytic activity, to show the ability to convert proenzymes of this system activating them into an active form. At the same time, practical medicine needs specific activators for quantitation of the level of some plasma enzymes, especially protein C and factor X, the lack of which leads to the development of thromboembolic diseases. Thus, some micromycetes of the genus Aspergillus were screened for the ability to synthesize extracellular proteases with promising activity for designing anti-thrombotic and diagnostic preparations. Such standard methods like salting out, electrophoresis, isoelectrofocusing were used for isolation, purification and study of physicochemical properties of proteases. Enzyme activity was measured spectrophotometrically fibrin as a substrate of the reaction and chromogenic peptide substrates of different proteases of the human hemostasis system. As a result of the screening, four active producers were selected: Aspergillus janus 301, A. flavus 1, A. terreus 2, and A. ochraceus L-1. The enzyme of A. janus 301 showed the greatest fibrinolytic activity (around 329.2 μmol Tyr/(ml × min)). The protease produced by A. terreus 2 had the highest plasmin-like activity (54.1 nmol pNA/(ml × min)), but fibrinolytic activity was lower than A. janus 301 demonstrated (25.2 μmol Tyr/(ml × min)). For extracellular protease of micromycete A. flavus a high plasmin-like activity was also shown (39.8 nmol pNA / (ml × min)). Moreover, according to our results proteases one of the fungi - A. terreus 2 were able to activate protein C of human plasma - the key factor of the human anticoagulant hemostasis system. This type of activity was 39.8 nmol pNA/(ml × min)). It was also shown that A. ochraceus L-1 could produce extracellular proteases with protein C and factor X activator activities (65.9 nmol pNA/(ml × min) and 34.6 nmol pNA/(ml × min) respectively). The maximum accumulation of the proteases falls on the 4th day of cultivation. Using isoelectrofocusing was demonstrated that the activation of both proenzymes might proceed via limited proteolysis induced by proteases of A. ochraceus L-1. The activatory activity of A. ochraceus L-1 proteases toward essential hemostatic proenzymes, protein C and X factor may be useful for practical needs. It is well known that similar enzymes, activators of protein C and X factor isolated from snake venom, South American copperhead Agkistrodon contortrix contortrix and Russell’s viper Daboia russelli russeli, respectively, are used for the in vitro diagnostics of the functional state of these proteins in blood plasma. Thus, the proteases of Aspergillus genus can be used as cheap components for enzyme thrombolytic preparations.

Keywords: anti-trombotic drugs, fibrinolysis, diagnostics, proteases, micromycetes

Procedia PDF Downloads 134
8292 Power Line Communication Integrated in a Wireless Power Transfer System: Feasibility of Surveillance Movement

Authors: M. Hemnath, S. Kannan, R. Kiran, K. Thanigaivelu

Abstract:

This paper is based on exploring the possible opportunities and applications using Power Line Communication (PLC) for security and surveillance operations. Various research works are done for introducing PLC into onboard vehicle communication and networking (CAN, LIN etc.) and various international standards have been developed. Wireless power transfer (WPT) is also an emerging technology which is studied and tested for recharging purposes. In this work we present a system which embeds the detection and the response into one which eliminates the need for dedicated network for data transmission. Also we check the feasibility for integrating wireless power transfer system into this proposed security system for transmission of power to detection unit wirelessly from the response unit.

Keywords: power line communication, wireless power transfer, surveillance

Procedia PDF Downloads 535
8291 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)

Authors: E. Kayitesi, S. Moyo, V. Mavumengwana

Abstract:

Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.

Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties

Procedia PDF Downloads 171
8290 Investigating the Potential Use of Unsaturated Fatty Acids as Antifungal Crop Protective Agents

Authors: Azadeh Yasari, Michael Ganzle, Stephen Strelkov, Nuanyi Liang, Jonathan Curtis, Nat N. V. Kav

Abstract:

Pathogenic fungi cause significant yield losses and quality reductions to major crops including wheat, canola, and barley. Toxic metabolites produced by phytopathogenic fungi also pose significant risks to animal and human health. Extensive application of synthetic fungicides is not a sustainable solution since it poses risks to human, animal and environmental health. Unsaturated fatty acids may provide an environmentally friendly alternative because of their direct antifungal activity against phytopathogens as well as through the stimulation of plant defense pathways. The present study assessed the in vitro and in vivo efficacy of two hydroxy fatty acids, coriolic acid and ricinoleic acid, against the phytopathogens Fusarium graminearum, Pyrenophora tritici-repentis, Pyrenophora teres f. teres, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Antifungal activity of coriolic acid and ricinoleic acid was evaluated using broth micro-dilution method to determine the minimum inhibitory concentration (MIC). Results indicated that both ricinoleic acid and coriolic acid showed antifungal activity against phytopathogens, with the strongest inhibitory activity against L. maculans, but the MIC varied greatly between species. An antifungal effect was observed for coriolic acid in vivo against pathogenic fungi of wheat and barley. This effect was not correlated to the in vitro activity because ricinoleic acid with equivalent in vitro antifungal activity showed no protective effect in vivo. Moreover, neither coriolic acid nor ricinoleic acid controlled fungal pathogens of canola. In conclusion, coriolic acid inhibits some phytopathogens in vivo and may have the potential to be an effective crop protection agent.

Keywords: coriolic acid, minimum inhibitory concentration, pathogenic fungi, ricinoleic acid

Procedia PDF Downloads 178
8289 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L

Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli

Abstract:

Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.

Keywords: artemisia absinthium, biological activities, essential oil, extraction processes

Procedia PDF Downloads 342
8288 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 150
8287 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 271