Search results for: Kazakh speech dataset
407 Unveiling the Indonesian Identity through Proverbial Expressions: The Relation of Meaning between Authority and Globalization
Authors: Prima Gusti Yanti, Fairul Zabadi
Abstract:
The purpose of the study is to find out relation of moral massage with the authority ang globalization in proverb. Proverb is one of the many forms of cultural identity of the Indonesian/Malay people fulled with moral values. The values contained within those proverbs are beneficial not only to the society, but also to those who held power amidst on this era of globalization. The method being used is qualitative research by using content analysis which is done by describing and uncovering the forms and meanings of proverbs used within Indonesia Minangkabau society. Sources for this study’s data were extracted from a Minangkabau native speaker in the subdistrict of Tanah Abang, Jakarta. Said sources were retrieved through a series of interviews with the Minangkabau native speaker, whose speech is still adorned with idiomatic expressions. The research findings show that there existed 30 proverbs or idiomatic expressions in the Minangkabau language that are often used by its indigenous people. The thirty data contain moral values that are closely interwoven with the matter of power and globalization. Analytical results show that there are fourteen moral values contained within proverbs reflect a firm connection between rule and power in globalization; such as: responsible, brave, togetherness and consensus,tolerance, politeness, thorough and meticulous,honest and keeping promise, ingenious and learning, care, self-correction, be fair, alert, arbitrary, self-awareness. Structurally, proverbs possess an unchangeably formal construction; symbolically, proverbs possess meanings that are clearly decided through ethnographic communicative factors along with situational and cultural contexts. Values contained within proverbs may be used as a guide in social management, be it between fellow men, men between nature, or even men between their Creator. Therefore, the meanings and values contained within the morals of proverbs could also be utilized as a counsel for those who rule and in charge of power in order to stem the tides of globalization that had already spread into sectoral, territorial and educational continuums.Keywords: continuum, globalization, identity, proverb, rule-power
Procedia PDF Downloads 389406 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder
Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh
Abstract:
In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization
Procedia PDF Downloads 114405 Collaborative Stylistic Group Project: A Drama Practical Analysis Application
Authors: Omnia F. Elkommos
Abstract:
In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.Keywords: applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning
Procedia PDF Downloads 184404 Hemispheric Locus and Gender Predict the Delay between the Moment of Stroke and Hospitalization
Authors: D. Anderlini, G. Wallis
Abstract:
Background: The number of people experiencing stroke is steadily increasing due to changes in diet and lifestyle, to longer life expectancy resulting in older population, to higher survival rates as a consequence of improvements during the acute phase. This study considers what risk factors might contribute to delayed entry to hospital for treatment. Methods: We analyzed data from 2472 patients admitted to the Stroke Unit of the Royal Brisbane Women's Hospital, Australia, between 2002 to 2011. Results: Previous studies have reported that factors which can contribute to delay include the patient’s age, the time of day, physical location, visit the GP instead of going to the emergency, means of transport, severity of symptoms and type of stroke. Contrary to findings of other studies, we found a strong correlation between side of lesion and delay in admission: patients with right hemisphere lesions had an average delay of 3.78 days, while patients with left hemisphere lesions had an average delay of 1.49 days. Damage to the right hemisphere generally ends in motor impairment in the non-dominant hand and no speech impediment. In contrast, left hemisphere lesions can result in deficit to; dominant hand function and aphasia which will be noticed even if their impact on performance is relatively minor. A finding which goes against many previous studies, is the fact that women get to the hospital much sooner than men, showing an average delay of 0.92 days in women vs. 3.36 days in men. Conclusion: Acute surgical-pharmacological therapies are most effective if applied immediately after stroke. Hence delays to admission can be crucial to the degree of recovery. The tendency of patients to overlook symptoms of right hemisphere lesion should be the target of information campaigns both for the general public and GPs. Why do men go to hospital so late? We don't know yet! Nevertheless an awareness plan specifically direct to male population should be on the agenda of Health Departments.Keywords: gender, admission delay, stroke location, bioinformatics, biomedicine
Procedia PDF Downloads 230403 Exploring Bidirectional Encoder Representations from the Transformers’ Capabilities to Detect English Preposition Errors
Authors: Dylan Elliott, Katya Pertsova
Abstract:
Preposition errors are some of the most common errors created by L2 speakers. In addition, improving error correction and detection methods remains an open issue in the realm of Natural Language Processing (NLP). This research investigates whether the bidirectional encoder representations from the transformers model (BERT) have the potential to correct preposition errors accurately enough to be useful in error correction software. This research finds that BERT performs strongly when the scope of its error correction is limited to preposition choice. The researchers used an open-source BERT model and over three hundred thousand edited sentences from Wikipedia, tagged for part of speech, where only a preposition edit had occurred. To test BERT’s ability to detect errors, a technique known as multi-level masking was used to generate suggestions based on sentence context for every prepositional environment in the test data. These suggestions were compared with the original errors in the data and their known corrections to evaluate BERT’s performance. The suggestions were further analyzed to determine if BERT more often agreed with the judgements of the Wikipedia editors. Both the untrained and fined-tuned models were compared. Finetuning led to a greater rate of error-detection which significantly improved recall, but lowered precision due to an increase in false positives or falsely flagged errors. However, in most cases, these false positives were not errors in preposition usage but merely cases where more than one preposition was possible. Furthermore, when BERT correctly identified an error, the model largely agreed with the Wikipedia editors, suggesting that BERT’s ability to detect misused prepositions is better than previously believed. To evaluate to what extent BERT’s false positives were grammatical suggestions, we plan to do a further crowd-sourcing study to test the grammaticality of BERT’s suggested sentence corrections against native speakers’ judgments.Keywords: BERT, grammatical error correction, preposition error detection, prepositions
Procedia PDF Downloads 147402 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Amir Shahab Shahabi, Mohsen Hasirian
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 14401 Authorship Attribution Using Sociolinguistic Profiling When Considering Civil and Criminal Cases
Authors: Diana A. Sokolova
Abstract:
This article is devoted to one of the possibilities for identifying the author of an oral or written text - sociolinguistic profiling. Sociolinguistic profiling is utilized as a forensic linguistics technique to identify individuals through language patterns, particularly in criminal cases. It examines how social factors influence language use. This study aims to showcase the significance of linguistic profiling for attributing authorship in texts and emphasizes the necessity for its continuous enhancement while considering its strengths and weaknesses. The study employs semantic-syntactic, lexical-semantic, linguopragmatic, logical, presupposition, authorization, and content analysis methods to investigate linguistic profiling. The research highlights the relevance of sociolinguistic profiling in authorship attribution and underscores the importance of ongoing refinement of the technique, considering its limitations. This study emphasizes the practical application of linguistic profiling in legal settings and underscores the impact of social factors on language use, contributing to the field of forensic linguistics. Data collection involves collecting oral and written texts from criminal and civil court cases to analyze language patterns for authorship attribution. The collected data is analyzed using various linguistic analysis methods to identify individual characteristics and patterns that can aid in authorship attribution. The study addresses the effectiveness of sociolinguistic profiling in identifying authors of texts and explores the impact of social factors on language use in legal contexts. In spite of advantages challenges in linguistics profiling have spurred debates and controversies in academic circles, legal environments, and the public sphere. So, this research highlights the significance of sociolinguistic profiling in authorship attribution and emphasizes the need for further development of this method, considering its strengths and weaknesses.Keywords: authorship attribution, detection of identifying, dialect, features, forensic linguistics, social influence, sociolinguistics, unique speech characteristics
Procedia PDF Downloads 38400 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 500399 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 367398 Management of Recurrent Temporomandibular Joint True Bony Ankylosis : A Case Report
Authors: Mahmoud A. Amin, Essam Taman, Ahmed Omran, Mahmoud Shawky, Ahmed Mekawy, Abdallah M. Kotkat, Saber Younes, Nehad N. Ghonemy, Amin Saad, Ezz-Aleslam, Abdullah M. Elosh
Abstract:
Introduction: TMJ is a one-of-a-kind, complicated synovial joint that helps with masticatory function by allowing the mandible to open and close the mouth. True ankylosis is a situation in which condylar movement is limited by a mechanical defect in the joint, whereas false ankylosis is a condition in which there is a restriction in mandibular movement due to muscular spasm myositis ossificans, and coronoid process hyperplasia. Ankylosis is characterized by the inability to open the mouth due to fusion of the TMJ condyle to the base of the skull as a result of trauma, infection, or systemic diseases such as rheumatoid arthritis (the most common) and psoraisis. Ankylosis causes facial asymmetry and affects the patient psychologically as well as speech, difficult mastication, poor oral hygiene, malocclusion, and other factors. TMJ is a technically challenging joint; hence TMJ ankylosis management is complicated. Case presentation: this case is a male patient 25 years old reported to our maxillofacial clinic in Damietta faculty of medicine, Al-Azhar University with the inability to open the mouth at all, with a history of difficulty of mouth breathing and eating foods, there was a history of falling from height at 2006, and the patient underwent corrective surgery before with no improvement because the ankylosis was relapsed short period after the previous operations with that done out of our hospital inter-incisor distant ZERO so, this condition need mandatory management. Clinical examination and radiological investigations were done after complete approval from the patient and his brother; tracheostomy was done for our patient before the operation. The patient entered the operation in our hospital and drastic improvement in mouth opening was noticed, helping to restore the physical psychological health of the patient.Keywords: temporomandibular joint, TMJ, Ankylosis, mouth opening, physiotherapy, condylar plate
Procedia PDF Downloads 154397 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 128396 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 317395 Food for Thought: Preparing the Brain to Eat New Foods through “Messy” Play
Authors: L. Bernabeo, T. Loftus
Abstract:
Many children often experience phases of picky eating, food aversions and/or avoidance. For families with children who have special needs, these experiences are often exacerbated, which can lead to feelings that negatively impact a caregiver’s relationship with their child. Within the scope of speech language pathology practice, knowledge of both emotional and feeding development is key. This paper will explore the significance of “messy play” within typical feeding development, and the challenges that may arise if a child does not have the opportunity to engage in this type of exploratory play. This paper will consider several contributing factors that can result in a “picky eater.” Further, research has shown that individuals with special needs, including autism, possess a neurological makeup that differs from that of a typical individual. Because autism is a disorder of relating and communicating due to differences in the limbic system, an individual with special needs may respond to a typical feeding experience as if it is a traumatic event. As a result, broadening one’s dietary repertoire may seem to be an insurmountable challenge. This paper suggests that introducing new foods through exploratory play can help broaden and strengthen diets, as well as improve the feeding experience, of individuals with autism. The DIRFloortimeⓇ methodology stresses the importance of following a child's lead. Within this developmental model, there is a special focus on a person’s individual differences, including the unique way they process the world around them, as well as the significance of therapy occurring within the context of a strong and motivating relationship. Using this child-centered approach, we can support our children in expanding their diets, while simultaneously building upon their cognitive and creative development through playful and respectful interactions that include exposure to foods that differ in color, texture, and smell. Further, this paper explores the importance of exploration, self-feeding and messy play on brain development, both in the context of typically developing individuals and those with disordered development.Keywords: development, feeding, floortime, sensory
Procedia PDF Downloads 116394 Factors Promoting French-English Tweets in France
Authors: Taoues Hadour
Abstract:
Twitter has become a popular means of communication used in a variety of fields, such as politics, journalism, and academia. This widely used online platform has an impact on the way people express themselves and is changing language usage worldwide at an unprecedented pace. The language used online reflects the linguistic battle that has been going on for several decades in French society. This study enables a deeper understanding of users' linguistic behavior online. The implications are important and allow for a rise in awareness of intercultural and cross-language exchanges. This project investigates the mixing of French-English language usage among French users of Twitter using a topic analysis approach. This analysis draws on Gumperz's theory of conversational switching. In order to collect tweets at a large scale, the data was collected in R using the rtweet package to access and retrieve French tweets data through Twitter’s REST and stream APIs (Application Program Interface) using the software RStudio, the integrated development environment for R. The dataset was filtered manually and certain repetitions of themes were observed. A total of nine topic categories were identified and analyzed in this study: entertainment, internet/social media, events/community, politics/news, sports, sex/pornography, innovation/technology, fashion/make up, and business. The study reveals that entertainment is the most frequent topic discussed on Twitter. Entertainment includes movies, music, games, and books. Anglicisms such as trailer, spoil, and live are identified in the data. Change in language usage is inevitable and is a natural result of linguistic interactions. The use of different languages online is just an example of what the real world would look like without linguistic regulations. Social media reveals a multicultural and multilinguistic richness which can deepen and expand our understanding of contemporary human attitudes.Keywords: code-switching, French, sociolinguistics, Twitter
Procedia PDF Downloads 137393 Examining Patterns in Ethnoracial Diversity in Los Angeles County Neighborhoods, 2016, Using Geographic Information System Analysis and Entropy Measure of Diversity
Authors: Joseph F. Cabrera, Rachael Dela Cruz
Abstract:
This study specifically examines patterns that define ethnoracially diverse neighborhoods. Ethnoracial diversity is important as it facilitates cross-racial interactions within neighborhoods which have been theorized to be associated with such outcomes as intergroup harmony, the reduction of racial and ethnic prejudice and discrimination, and increases in racial tolerance. Los Angeles (LA) is an ideal location to study ethnoracial spatial patterns as it is one of the most ethnoracially diverse cities in the world. A large influx of Latinos, as well as Asians, have contributed to LA’s urban landscape becoming increasingly diverse over several decades. Our dataset contains all census tracts in Los Angeles County in 2016 and incorporates Census and ACS demographic and spatial data. We quantify ethnoracial diversity using a derivative of Simpson’s Diversity Index and utilize this measure to test previous literature that suggests Latinos are one of the key drivers of changing ethnoracial spatial patterns in Los Angeles. Preliminary results suggest that there has been an overall increase in ethnoracial diversity in Los Angeles neighborhoods over the past sixteen years. Patterns associated with this trend include decreases in predominantly white and black neighborhoods, increases in predominantly Latino and Asian neighborhoods, and a general decrease in the white populations of the most diverse neighborhoods. A similar pattern is seen in neighborhoods with large Latino increases- a decrease in white population, but with an increase in Asian and black populations. We also found support for previous research that suggests increases in Latino and Asian populations act as a buffer, allowing for black population increases without a sizeable decrease in the white population. Future research is needed to understand the underlying causes involved in many of the patterns and trends highlighted in this study.Keywords: race, race and interaction, racial harmony, social interaction
Procedia PDF Downloads 132392 Discovering Word-Class Deficits in Persons with Aphasia
Authors: Yashaswini Channabasavegowda, Hema Nagaraj
Abstract:
Aim: The current study aims at discovering word-class deficits concerning the noun-verb ratio in confrontation naming, picture description, and picture-word matching tasks. A total of ten persons with aphasia (PWA) and ten age-matched neurotypical individuals (NTI) were recruited for the study. The research includes both behavioural and objective measures to assess the word class deficits in PWA. Objective: The main objective of the research is to identify word class deficits seen in persons with aphasia, using various speech eliciting tasks. Method: The study was conducted in the L1 of the participants, considered to be Kannada. Action naming test and Boston naming test adapted to the Kannada version are administered to the participants; also, a picture description task is carried out. Picture-word matching task was carried out using e-prime software (version 2) to measure the accuracy and reaction time with respect to identification verbs and nouns. The stimulus was presented through auditory and visual modes. Data were analysed to identify errors noticed in the naming of nouns versus verbs, with respect to the Boston naming test and action naming test and also usage of nouns and verbs in the picture description task. Reaction time and accuracy for picture-word matching were extracted from the software. Results: PWA showed a significant difference in sentence structure compared to age-matched NTI. Also, PWA showed impairment in syntactic measures in the picture description task, with fewer correct grammatical sentences and fewer correct usage of verbs and nouns, and they produced a greater proportion of nouns compared to verbs. PWA had poorer accuracy and lesser reaction time in the picture-word matching task compared to NTI, and accuracy was higher for nouns compared to verbs in PWA. The deficits were noticed irrespective of the cause leading to aphasia.Keywords: nouns, verbs, aphasia, naming, description
Procedia PDF Downloads 102391 A Novel Mediterranean Diet Index from the Middle East and North Africa Region: Comparison with Europe
Authors: Farah Naja, Nahla Hwalla, Leila Itani, Shirine Baalbaki, Abla Sibai, Lara Nasreddine
Abstract:
Purpose: To propose an index for assessing adherence to a Middle-Eastern version of the Mediterranean diet as represented by the traditional Lebanese Mediterranean diet (LMD), to evaluate the association between the LMD and selected European Mediterranean diets (EMD); to examine socio-demographic and lifestyle correlates of adherence to Mediterranean diet (MD) among Lebanese adults. Methods: Using nationally representative dietary intake data of Lebanese adults, an index to measure adherence to the LMD was derived. The choice of food groups used for calculating the LMD score was based on results of previous factor analyses conducted on the same dataset. These food groups included fruits, vegetables, legumes, olive oil, burghol, dairy products, starchy vegetables, dried fruits, and eggs. Using Pearson’s correlation and scores tertiles distributions agreement, the derived LMD index was compared to previously published EMD indexes from Greece, Spain, Italy, France, and EPIC. Results: Fruits, vegetables and olive oil were common denominators to all MD scores. Food groups, specific to the LMD, included burghol and dried fruits. The LMD score significantly correlated with the EMD scores, while being closest to the Italian (r=0.57) and farthest from the French (r=0.21). Percent agreement between scores’ tertile distributions and Kappa statistics confirmed these findings. Multivariate linear regression showed that older age, higher educational, female gender, and healthy lifestyle characteristics were associated with increased adherence to all MD studied. Conclusion: A novel LMD index was proposed to characterize Mediterranean diet in Lebanon, complementing international efforts to characterize the MD and its association with disease risk.Keywords: mediterranean diet, adherence, Middle-East, Lebanon, Europe
Procedia PDF Downloads 410390 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 66389 Translanguaging and Cross-languages Analyses in Writing and Oral Production with Multilinguals: a Systematic Review
Authors: Maryvone Cunha de Morais, Lilian Cristine Hübner
Abstract:
Based on a translanguaging theoretical approach, which considers language not as separate entities but as an entire repertoire available to bilingual individuals, this systematic review aimed at analyzing the methods (aims, samples investigated, type of stimuli, and analyses) adopted by studies on translanguaging practices associated with written and oral tasks (separately or integrated) in bilingual education. The PRISMA criteria for systematic reviews were adopted, with the descriptors "translanguaging", "bilingual education" and/or “written and oral tasks" to search in Pubmed/Medline, Lilacs, Eric, Scopus, PsycINFO, and Web of Science databases for articles published between 2017 and 2021. 280 registers were found, and after following the inclusion/exclusion criteria, 24 articles were considered for this analysis. The results showed that translanguaging practices were investigated on four studies focused on written production analyses, ten focused on oral production analysis, whereas ten studies focused on both written and oral production analyses. The majority of the studies followed a qualitative approach, while five studies have attempted to study translanguaging with quantitative statistical measures. Several types of methods were used to investigate translanguaging practices in written and oral production, with different approaches and tools indicating that the methods are still in development. Moreover, the findings showed that students’ interactions have received significant attention, and studies have been developed not just in language classes in bilingual education, but also including diverse educational and theoretical contexts such as Content and Language Integrated Learning, task repetition, Science classes, collaborative writing, storytelling, peer feedback, Speech Act theory and collective thinking, language ideologies, conversational analysis, and discourse analyses. The studies, whether focused either on writing or oral tasks or in both, have portrayed significant research and pedagogical implications, grounded on the view of integrated languages in bi-and multilinguals.Keywords: bilingual education, oral production, translanguaging, written production
Procedia PDF Downloads 126388 Voice Quality in Italian-Speaking Children with Autism
Authors: Patrizia Bonaventura, Magda Di Renzo
Abstract:
This project aims to measure and assess the voice quality in children with autism. Few previous studies exist which have analyzed the voice quality of individuals with autism: abnormal voice characteristics have been found, like a high pitch, great pitch range, and sing-song quality. Existing studies did not focus specifically on Italian-speaking children’s voices and provided analysis of a few acoustic parameters. The present study aimed to gather more data and to perform acoustic analysis of the voice of children with autism in order to identify patterns of abnormal voice features that might shed some light on the causes of the dysphonia and possibly be used to create a pediatric assessment tool for early identification of autism. The participants were five native Italian-speaking boys with autism between the age of 4 years and 10 years (mean 6.8 ± SD 1.4). The children had a diagnosis of autism, were verbal, and had no other comorbid conditions (like Down syndrome or ADHD). The voices of the autistic children were recorded in the production of sustained vowels [ah] and [ih] and of sentences from the Italian version of the CAPE-V voice assessment test. The following voice parameters, representative of normal quality, were analyzed by acoustic spectrography through Praat: Speaking Fundamental Frequency, F0 range, average intensity, and dynamic range. The results showed that the pitch parameters (Speaking Fundamental Frequency and F0 range), as well as the intensity parameters (average intensity and dynamic range), were significantly different from the relative normal reference thresholds. Also, variability among children was found, so confirming a tendency revealed in previous studies of individual variation in these aspects of voice quality. The results indicate a general pattern of abnormal voice quality characterized by a high pitch and large variations in pitch and intensity. These acoustic voice characteristics found in Italian-speaking autistic children match those found in children speaking other languages, indicating that autism symptoms affecting voice quality might be independent of the native language of the children.Keywords: autism, voice disorders, speech science, acoustic analysis of voice
Procedia PDF Downloads 71387 Communication Barriers and Challenges for Accessing Autism Care: Conventional Versus Alternative Medicine
Authors: M. D. Antoine
Abstract:
Despite the widespread use of complementary and alternative medicine (CAM) for autistic children, little is known about the communication flow between the different parties involved in autism care (e.g., parents/caregivers, conventional providers, alternative practitioners). This study aimed to describe how communication occurs through the first year following an autism spectrum disorder (ASD) diagnosis to identify challenges and potential barriers to communication within the healthcare system in Ottawa, Canada. From an ecological perspective, we collected qualitative data through 12 semi-structured interviews with six parents/caregivers, three conventional providers (e.g., family doctor, neurodevelopmental pediatrician, psychologist), and three alternative practitioners (e.g., naturopath, occupational therapist, speech and language pathologist) operating in Ottawa. We interpreted the data using thematic analysis. Findings revealed communication challenges between the parents/caregivers and conventional providers while they experience better communication flow with fewer challenges in alternative care settings. However, parents/caregivers are the only links between the health professionals of both streams. From the five contexts examined: organizational, interpersonal, media, cultural, and political-legal, we found four themes (provider knowledge, care integration, flexible care, and time constraints) underlining specific barriers to communication flow between the parties involved in the care of autistic children. The increasing interest in alternative medicine is forcing changes in the healthcare system. Communications occur outside the norms making openings for better communication and information-sharing increasingly essential. Within the identified themes in the current study, the necessity for better communication between all parties involved in the care of autistic children is evident. More ASD and CAM-related training for providers would support effective parent/caregiver-provider communication. The findings of the current study contribute to a better understanding of the role of communication in the care management of autism, which has implications for effective autism care.Keywords: alternative medicine, autism care management, autism spectrum disorder, conventional medicine, parent-provider communication
Procedia PDF Downloads 177386 Identifying Indicative Health Behaviours and Psychosocial Factors Affecting Multi-morbidity Conditions in Ageing Populations: Preliminary Results from the ELSA study of Ageing
Authors: Briony Gray, Glenn Simpson, Hajira Dambha-Miller, Andrew Farmer
Abstract:
Multimorbidity may be strongly affected by a variety of conditions, factors, and variables requiring higher demands on health and social care services, infrastructure, and expenses. Holding one or more conditions increases one’s risk for development of future conditions; with patients over 65 years old at highest risk. Psychosocial factors such as anxiety and depression are rising exponentially globally, which has been amplified by the COVID19 pandemic. These are highly correlated and predict poorer outcomes when held in coexistence and increase the likelihood of comorbid physical health conditions. While possible future reform of social and healthcare systems may help to alleviate some of these mounting pressures, there remains an urgent need to better understand the potential role health behaviours and psychosocial conditions - such as anxiety and depression – may have on aging populations. Using the UK healthcare scene as a lens for analysis, this study uses big data collected in the UK Longitudinal Study of Aging (ELSA) to examine the role of anxiety and depression in ageing populations (65yrs+). Using logistic regression modelling, results identify the 10 most significant variables correlated with both anxiety and depression from data categorised into the areas of health behaviour, psychosocial, socioeconomic, and life satisfaction (each demonstrated through literature review to be of significance). These are compared with wider global research findings with the aim of better understanding the areas in which social and healthcare reform can support multimorbidity interventions, making suggestions for improved patient-centred care. Scope of future research is outlined, which includes analysis of 59 total multimorbidity variables from the ELSA dataset, going beyond anxiety and depression.Keywords: multimorbidity, health behaviours, patient centred care, psychosocial factors
Procedia PDF Downloads 92385 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 116384 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education
Authors: Ana Hol
Abstract:
We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.Keywords: STEM, curiosity, innovation, advancements
Procedia PDF Downloads 199383 Expression of DNMT Enzymes-Regulated miRNAs Involving in Epigenetic Event of Tumor and Margin Tissues in Patients with Breast Cancer
Authors: Fatemeh Zeinali Sehrig
Abstract:
Background: miRNAs play an important role in the post-transcriptional regulation of genes, including genes involved in DNA methylation (DNMTs), and are also important regulators of oncogenic pathways. The study of microRNAs and DNMTs in breast cancer allows the development of targeted treatments and early detection of this cancer. Methods and Materials: Clinical Patients and Samples: Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee (Ethics code: IR.IAU.TABRIZ.REC.1401.063) of Tabriz Azad University, Tabriz, Iran. In this study, tissues of 100 patients with breast cancer and tissues of 100 healthy women were collected from Noor Nejat Hospital in Tabriz. The basic characteristics of the patients with breast cancer included: 1)Tumor grade(Grade 3 = 5%, Grade 2 = 87.5%, Grade 1 = 7.5%), 2)Lymph node(Yes = 87.5%, No = 12.5%), 3)Family cancer history(Yes = 47.5%, No = 41.3%, Unknown = 11.2%), 4) Abortion history(Yes = 36.2%).In silico methods (data gathering, process, and build networks): Gene Expression Omnibus (GEO), a high-throughput genomic database, was queried for miRNAs expression profiles in breast cancer. For Experimental protocol Tissue Processing, Total RNA isolation, complementary DNA(cDNA) synthesis, and quantitative real time PCR (QRT-PCR) analysis were performed. Results: In the present study, we found significant (p.value<0.05) changes in the expression level of miRNAs and DNMTs in patients with breast cancer. In bioinformatics studies, the GEO microarray data set, similar to qPCR results, showed a decreased expression of miRNAs and increased expression of DNMTs in breast cancer. Conclusion: According to the results of the present study, which showed a decrease in the expression of miRNAs and DNMTs in breast cancer, it can be said that these genes can be used as important diagnostic and therapeutic biomarkers in breast cancer.Keywords: gene expression omnibus, microarray dataset, breast cancer, miRNA, DNMT (DNA methyltransferases)
Procedia PDF Downloads 35382 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 256381 Self-Reported Health Status and Its Consistency: Evidence from India
Authors: Dona Ghosh, Zakir Husain
Abstract:
In India, the increase in share of aged has generated many social and economic issues, of which health concerns is a major challenge that society must confront in coming years. Self-reported health (SRH) is a popular health measure in this regard but has been questioned in recent years due to its heavy dependence on the socioeconomic status. So, the validity of SRH, as a measure of health status during old age, is needed to be verified. This paper emphasizes on the self-reported health and related inconsistent responses among elderly in India. The objective of the study is bifurcated into two parts: firstly, to identify the socioeconomic determinants of subjective health status and its change over time; and secondly, to analyse the role of the socioeconomic components in providing inconsistent responses regarding the health status of elderly. Inconsistency in response can rise in two ways: positive response bias (if an individual has a health problem but reports his/her health as good) and negative response bias (if bad health is reported even if there is no health problem). However, in the present study, we focus only on the negative response bias of elderly individuals. To measure the inconsistencies in responses, self-reported health is compared with two types of physical health conditions – existence of chronicle ailment and physical immobility. Using NSS dataset of 60th and 71st rounds, the study found that subjective health has worsened over time in both rural and urban areas. Findings suggest that inconsistency in responses, related to chronic ailment, vary across social classes, living environments, geographical regions, age groups and education levels. On the contrary, variation in inconsistent responses regarding physical mobility is quite rare and difficult to explain by socioeconomic characteristics because most of the indicators are found to be insignificant in this regard. The findings indicate that in case of chronicle ailment, inconsistency between objective and subjective health status largely depends on socioeconomic conditions but the importance of such factors disappears for physical immobility.Keywords: India, aging, self-reported health, inconsistent responses
Procedia PDF Downloads 290380 The Impact of Cryptocurrency Classification on Money Laundering: Analyzing the Preferences of Criminals for Stable Coins, Utility Coins, and Privacy Tokens
Authors: Mohamed Saad, Huda Ismail
Abstract:
The purpose of this research is to examine the impact of cryptocurrency classification on money laundering crimes and to analyze how the preferences of criminals differ according to the type of digital currency used. Specifically, we aim to explore the roles of stablecoins, utility coins, and privacy tokens in facilitating or hindering money laundering activities and to identify the key factors that influence the choices of criminals in using these cryptocurrencies. To achieve our research objectives, we used a dataset for the most highly traded cryptocurrencies (32 currencies) that were published on the coin market cap for 2022. In addition to conducting a comprehensive review of the existing literature on cryptocurrency and money laundering, with a focus on stablecoins, utility coins, and privacy tokens, Furthermore, we conducted several Multivariate analyses. Our study reveals that the classification of cryptocurrency plays a significant role in money laundering activities, as criminals tend to prefer certain types of digital currencies over others, depending on their specific needs and goals. Specifically, we found that stablecoins are more commonly used in money laundering due to their relatively stable value and low volatility, which makes them less risky to hold and transfer. Utility coins, on the other hand, are less frequently used in money laundering due to their lack of anonymity and limited liquidity. Finally, privacy tokens, such as Monero and Zcash, are increasingly becoming a preferred choice among criminals due to their high degree of privacy and untraceability. In summary, our study highlights the importance of understanding the nuances of cryptocurrency classification in the context of money laundering and provides insights into the preferences of criminals in using digital currencies for illegal activities. Based on our findings, our recommendation to the policymakers is to address the potential misuse of cryptocurrencies for money laundering. By implementing measures to regulate stable coins, strengthening cross-border cooperation, fostering public-private partnerships, and increasing cooperation, policymakers can help prevent and detect money laundering activities involving digital currencies.Keywords: crime, cryptocurrency, money laundering, tokens.
Procedia PDF Downloads 87379 Joubert Syndrome and Related Disorders: A Single Center Experience
Authors: Ali Al Orf, Khawaja Bilal Waheed
Abstract:
Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia
Procedia PDF Downloads 95378 American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 43