Search results for: independent sample t test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15506

Search results for: independent sample t test

116 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India

Authors: Jenifer Alam, Rima Chatterjee

Abstract:

Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.

Keywords: Eaton, strain, stress, poroelastic model

Procedia PDF Downloads 220
115 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity

Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll

Abstract:

Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.

Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis

Procedia PDF Downloads 182
114 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 383
113 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods

Authors: Murat Arıbaş, Uğur Özcan

Abstract:

Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.

Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.

Procedia PDF Downloads 594
112 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults

Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 95
111 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 91
110 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.

Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete

Procedia PDF Downloads 259
109 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii

Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu

Abstract:

Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.

Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins

Procedia PDF Downloads 290
108 Stress and Distress among Physician Trainees: A Wellbeing Workshop

Authors: Carmen Axisa, Louise Nash, Patrick Kelly, Simon Willcock

Abstract:

Introduction: Doctors experience high levels of burnout, stress and psychiatric morbidity. This can affect the health of the doctor and impact patient care. Study Aims: To evaluate the effectiveness of a workshop intervention to promote wellbeing for Australian Physician Trainees. Methods: A workshop was developed in consultation with specialist clinicians to promote health and wellbeing for physician trainees. The workshop objectives were to improve participant understanding about factors affecting their health and wellbeing, to outline strategies on how to improve health and wellbeing and to encourage participants to apply these strategies in their own lives. There was a focus on building resilience and developing long term healthy behaviours as part of the physician trainee daily lifestyle. Trainees had the opportunity to learn practical strategies for stress management, gain insight into their behaviour and take steps to improve their health and wellbeing. The workshop also identified resources and support systems available to trainees. The workshop duration was four and a half hours including a thirty- minute meal break where a catered meal was provided for the trainees. Workshop evaluations were conducted at the end of the workshop. Sixty-seven physician trainees from Adult Medicine and Paediatric training programs in Sydney Australia were randomised into intervention and control groups. The intervention group attended a workshop facilitated by specialist clinicians and the control group did not. Baseline and post intervention measurements were taken for both groups to evaluate the impact and effectiveness of the workshop. Forty-six participants completed all three measurements (69%). Demographic, personal and self-reported data regarding work/life patterns was collected. Outcome measures include Depression Anxiety Stress Scale (DASS), Professional Quality of Life Scale (ProQOL) and Alcohol Use Disorders Identification Test (AUDIT). Results: The workshop was well received by the physician trainees and workshop evaluations showed that the majority of trainees strongly agree or agree that the training was relevant to their needs (96%) and met their expectations (92%). All trainees strongly agree or agree that they would recommend the workshop to their medical colleagues. In comparison to the control group we observed a reduction in alcohol use, depression and burnout but an increase in stress, anxiety and secondary traumatic stress in the intervention group, at the primary endpoint measured at 6 months. However, none of these differences reached statistical significance (p > 0.05). Discussion: Although the study did not reach statistical significance, the workshop may be beneficial to physician trainees. Trainees had the opportunity to share ideas, gain insight into their own behaviour, learn practical strategies for stress management and discuss approach to work, life and self-care. The workshop discussions enabled trainees to share their experiences in a supported environment where they learned that other trainees experienced stress and burnout and they were not alone in needing to acquire successful coping mechanisms and stress management strategies. Conclusion: These findings suggest that physician trainees are a vulnerable group who may benefit from initiatives that promote wellbeing and from a more supportive work environment.

Keywords: doctors' health, physician burnout, physician resilience, wellbeing workshop

Procedia PDF Downloads 193
107 Establishing Correlation between Urban Heat Island and Urban Greenery Distribution by Means of Remote Sensing and Statistics Data to Prioritize Revegetation in Yerevan

Authors: Linara Salikhova, Elmira Nizamova, Aleksandra Katasonova, Gleb Vitkov, Olga Sarapulova.

Abstract:

While most European cities conduct research on heat-related risks, there is a research gap in the Caucasus region, particularly in Yerevan, Armenia. This study aims to test the method of establishing a correlation between urban heat islands (UHI) and urban greenery distribution for prioritization of heat-vulnerable areas for revegetation. Armenia has failed to consider measures to mitigate UHI in urban development strategies despite a 2.1°C increase in average annual temperature over the past 32 years. However, planting vegetation in the city is commonly used to deal with air pollution and can be effective in reducing UHI if it prioritizes heat-vulnerable areas. The research focuses on establishing such priorities while considering the distribution of urban greenery across the city. The lack of spatially explicit air temperature data necessitated the use of satellite images to achieve the following objectives: (1) identification of land surface temperatures (LST) and quantification of temperature variations across districts; (2) classification of massifs of land surface types using normalized difference vegetation index (NDVI); (3) correlation of land surface classes with LST. Examination of the heat-vulnerable city areas (in this study, the proportion of individuals aged 75 years and above) is based on demographic data (Census 2011). Based on satellite images (Sentinel-2) captured on June 5, 2021, NDVI calculations were conducted. The massifs of the land surface were divided into five surface classes. Due to capacity limitations, the average LST for each district was identified using one satellite image from Landsat-8 on August 15, 2021. In this research, local relief is not considered, as the study mainly focuses on the interconnection between temperatures and green massifs. The average temperature in the city is 3.8°C higher than in the surrounding non-urban areas. The temperature excess ranges from a low in Norq Marash to a high in Nubarashen. Norq Marash and Avan have the highest tree and grass coverage proportions, with 56.2% and 54.5%, respectively. In other districts, the balance of wastelands and buildings is three times higher than the grass and trees, ranging from 49.8% in Quanaqer-Zeytun to 76.6% in Nubarashen. Studies have shown that decreased tree and grass coverage within a district correlates with a higher temperature increase. The temperature excess is highest in Erebuni, Ajapnyak, and Nubarashen districts. These districts have less than 25% of their area covered with grass and trees. On the other hand, Avan and Norq Marash districts have a lower temperature difference, as more than 50% of their areas are covered with trees and grass. According to the findings, a significant proportion of the elderly population (35%) aged 75 years and above reside in the Erebuni, Ajapnyak, and Shengavit neighborhoods, which are more susceptible to heat stress with an LST higher than in other city districts. The findings suggest that the method of comparing the distribution of green massifs and LST can contribute to the prioritization of heat-vulnerable city areas for revegetation. The method can become a rationale for the formation of an urban greening program.

Keywords: heat-vulnerability, land surface temperature, urban greenery, urban heat island, vegetation

Procedia PDF Downloads 75
106 Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton

Authors: Siddharudha B. Patil

Abstract:

Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton.

Keywords: Spinetoram10% WG+Sulfoxaflor 30% WG, sucking pests, bollworms, Bt cotton, management

Procedia PDF Downloads 257
105 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 76
104 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 118
103 Speech and Swallowing Function after Tonsillo-Lingual Sulcus Resection with PMMC Flap Reconstruction: A Case Study

Authors: K. Rhea Devaiah, B. S. Premalatha

Abstract:

Background: Tonsillar Lingual sulcus is the area between the tonsils and the base of the tongue. The surgical resection of the lesions in the head and neck results in changes in speech and swallowing functions. The severity of the speech and swallowing problem depends upon the site and extent of the lesion, types and extent of surgery and also the flexibility of the remaining structures. Need of the study: This paper focuses on the importance of speech and swallowing rehabilitation in an individual with the lesion in the Tonsillar Lingual Sulcus and post-operative functions. Aim: Evaluating the speech and swallow functions post-intensive speech and swallowing rehabilitation. The objectives are to evaluate the speech intelligibility and swallowing functions after intensive therapy and assess the quality of life. Method: The present study describes a report of an individual aged 47years male, with the diagnosis of basaloid squamous cell carcinoma, left tonsillar lingual sulcus (pT2n2M0) and underwent wide local excision with left radical neck dissection with PMMC flap reconstruction. Post-surgery the patient came with a complaint of reduced speech intelligibility, and difficulty in opening the mouth and swallowing. Detailed evaluation of the speech and swallowing functions were carried out such as OPME, articulation test, speech intelligibility, different phases of swallowing and trismus evaluation. Self-reported questionnaires such as SHI-E(Speech handicap Index- Indian English), DHI (Dysphagia handicap Index) and SESEQ -K (Self Evaluation of Swallowing Efficiency in Kannada) were also administered to know what the patient feels about his problem. Based on the evaluation, the patient was diagnosed with pharyngeal phase dysphagia associated with trismus and reduced speech intelligibility. Intensive speech and swallowing therapy was advised weekly twice for the duration of 1 hour. Results: Totally the patient attended 10 intensive speech and swallowing therapy sessions. Results indicated misarticulation of speech sounds such as lingua-palatal sounds. Mouth opening was restricted to one finger width with difficulty chewing, masticating, and swallowing the bolus. Intervention strategies included Oro motor exercise, Indirect swallowing therapy, usage of a trismus device to facilitate mouth opening, and change in the food consistency to help to swallow. A practice session was held with articulation drills to improve the production of speech sounds and also improve speech intelligibility. Significant changes in articulatory production and speech intelligibility and swallowing abilities were observed. The self-rated quality of life measures such as DHI, SHI and SESE Q-K revealed no speech handicap and near-normal swallowing ability indicating the improved QOL after the intensive speech and swallowing therapy. Conclusion: Speech and swallowing therapy post carcinoma in the tonsillar lingual sulcus is crucial as the tongue plays an important role in both speech and swallowing. The role of Speech-language and swallowing therapists in oral cancer should be highlighted in treating these patients and improving the overall quality of life. With intensive speech-language and swallowing therapy post-surgery for oral cancer, there can be a significant change in the speech outcome and swallowing functions depending on the site and extent of lesions which will thereby improve the individual’s QOL.

Keywords: oral cancer, speech and swallowing therapy, speech intelligibility, trismus, quality of life

Procedia PDF Downloads 115
102 Early Initiation of Breastfeeding and Its Determinants among Non-Caesarean Deliveries at Primary and Secondary Health Facilities: A Case Observational Study

Authors: Farhana Karim, Abdullah N. S. Khan, Mohiuddin A. K. Chowdhury, Nabila Zaka, Alexander Manu, Shams El Arifeen, Sk Masum Billah

Abstract:

Breastfeeding, an integral part of newborn care, can reduce 55-87% of all-cause neonatal mortality and morbidity. Early initiation of breastfeeding within 1 hour of birth can avert 22% of newborn mortality. Only 45% of world’s newborns and 42% of newborns in South-Asia are put to the breast within one hour of birth. In Bangladesh, only a half of the mothers practice early initiation of breastfeeding which is less likely to be practiced if the baby is born in a health facility. This study aims to generate strong evidence for early initiation of breastfeeding practices in the government health facilities and to explore the associated factors influencing the practice. The study was conducted in selected health facilities in three neighbouring districts of Northern Bangladesh. Total 249 normal vaginal delivery cases were observed for 24 hours since the time of birth. The outcome variable was initiation of breastfeeding within 1 hour while the explanatory variables included type of health facility, privacy, presence of support person, stage of labour at admission, need for augmentation of labour, complications during delivery, need for episiotomy, spontaneous cry of the newborn, skin-to-skin contact with mother, post-natal contact with the service provider, receiving a post-natal examination and counselling on breastfeeding during postnatal contact. The simple descriptive statistics were employed to see the distribution of samples according to socio-demographic characteristics. Kruskal-Wallis test was carried out for testing the equality of medians among two or more categories of each variable and P-value is reported. A series of simple logistic regressions were conducted with all the potential explanatory variables to identify the determining factors for breastfeeding within 1 hour in a health facility. Finally, multiple logistic regression was conducted including the variables found significant at bi-variate analyses. Almost 90% participants initiated breastfeeding at the health facility and median time to initiate breastfeeding was 38 minutes. However, delivering in a sub-district hospital significantly delayed the breastfeeding initiation in comparison to delivering in a district hospital. Maintenance of adequate privacy and presence of separate staff for taking care of newborn significantly reduced the time in early breastfeeding initiation. Initiation time was found longer if the mother had an augmented labour, obstetric complications, and the newborn needed resuscitation. However, the initiation time was significantly early if the baby was put skin-to-skin on mother’s abdomen and received a postnatal examination by a provider. After controlling for the potential confounders, the odds of initiating breastfeeding within one hour of birth is higher if mother gives birth in a district hospital (AOR 3.0: 95% CI 1.5, 6.2), privacy is well-maintained (AOR 2.3: 95% CI 1.1, 4.5), babies cry spontaneously (AOR 7.7: 95% CI 3.3, 17.8), babies are put to skin-to-skin contact with mother (AOR 4.6: 95% CI 1.9, 11.2) and if the baby is examined by a provider in the facility (AOR 4.4: 95% CI 1.4, 14.2). The evidence generated by this study will hopefully direct the policymakers to identify and prioritize the scopes for creating and supporting early initiation of breastfeeding in the health facilities.

Keywords: Bangladesh, early initiation of breastfeeding, health facility, normal vaginal delivery, skin to skin contact

Procedia PDF Downloads 158
101 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice

Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant

Abstract:

Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.

Keywords: clinical simulation, education, pharmacology, simulation, virtual learning

Procedia PDF Downloads 343
100 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture

Authors: Ann P. Daunic, Nancy Corbett

Abstract:

Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.

Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development

Procedia PDF Downloads 130
99 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger

Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath

Abstract:

Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.

Keywords: ferulic acid, ginger, synthesis, zingerone

Procedia PDF Downloads 178
98 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 266
97 Amyloid Angiopathy and Golf: Two Opposite but Close Worlds

Authors: Andrea Bertocchi, Alessio Barnaba Di Fonzo, Davide Talarico, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 89 years old male (180cm/85kg) retired notary former golfer with no past medical history. He describes a progressive ideomotor slowdown for 14 months. The disorder is characterized by short-term memory deficits and, for some months, also by unstable walking with a broad base with skidding and risk of falling at directional changes and urinary urgency. There were also episodes of aggression towards his wife and staff. At the time, the patient takes no prescribed medications. He has difficulty eating, dressing, and some problems with personal hygiene. In the initial visit, the patient was alert, cooperating, and performed simple tasks; however, he has a hearing impairment, slowed spontaneous speech, and amnestic deficit to the short story. Ideomotor apraxia is not present. He scored 20 points in the MMSE. From a motor function, he has deficits using Medical Research Council (MRC) 3-/5 in bilateral lower limbs and requires maximum assistance from sit to stand with existing premature fatigue. He’s unable to walk for about 1 month. Tremors and hypertonia are absent. BERG was unable to be administered, and BARTHEL was obtained 45/100. An Amyloid Angiopathy is suspected and then confirmed at the neurological examination. Therehabilitation objectives were the recovery of mobility and reinforcement of the UE/LE, especially legs, for recovery of standing and walking. The cognitive aspect was also an essential factor for the patient's recovery. The literature doesn’t demonstrate any particular studies regarding motor and cognitive rehabilitation on this pathology. Failing to manage his attention on exercise and tending to be disinterested and falling asleep constantly, we used golf-specific gestures to stimulate his mind to work and get results because the patient has memory recall of golf related movement. We worked for 4 months with a frequency of 3 sessions per week. Every session lasted for 45 minutes. After 4 months of work, the patient walked independently with the use of a stick for about 120 meters without stopping. MRC 4/5 AI bilaterally andpostural steps performed independently with supervision. BERG 36/56. BARTHEL 65/100. 6 Minutes Walking Test (6MWT), at the beginning, it wasn’t measurable, now, he performs 151,5m with Numeric Rating Scale 4 at the beginning and 7 at the end. Cognitively, he no longer has episodes of aggression, although the short-term memory and concentration deficit remains. Amyloid Angiopathy is a mix of motor and cognitive disorder. It is worth the thought that cerebral amyloid angiopathy manifests with functional deficits due to strokes and bleedings and, as such, has an important rehabilitation indication, as classical stroke is not associated with amyloidosis. Exploring the motor patterns learned at a young age and remained in the implicit and explicit memory of the patient allowed us to set up effective work and to obtain significant results in the short-middle term. Surely many studies will still be done regarding this pathology and its rehabilitation, but the importance of the cognitive sphere applied to the motor sphere could represent an important starting point.

Keywords: amyloid angiopathy, cognitive rehabilitation, golf, motor disorder

Procedia PDF Downloads 143
96 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion

Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro

Abstract:

In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.

Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment

Procedia PDF Downloads 51
95 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 63
94 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease

Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica

Abstract:

Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.

Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses

Procedia PDF Downloads 195
93 Social Vulnerability Mapping in New York City to Discuss Current Adaptation Practice

Authors: Diana Reckien

Abstract:

Vulnerability assessments are increasingly used to support policy-making in complex environments, like urban areas. Usually, vulnerability studies include the construction of aggregate (sub-) indices and the subsequent mapping of indices across an area of interest. Vulnerability studies show a couple of advantages: they are great communication tools, can inform a wider general debate about environmental issues, and can help allocating and efficiently targeting scarce resources for adaptation policy and planning. However, they also have a number of challenges: Vulnerability assessments are constructed on the basis of a wide range of methodologies and there is no single framework or methodology that has proven to serve best in certain environments, indicators vary highly according to the spatial scale used, different variables and metrics produce different results, and aggregate or composite vulnerability indicators that are mapped easily distort or bias the picture of vulnerability as they hide the underlying causes of vulnerability and level out conflicting reasons of vulnerability in space. So, there is urgent need to further develop the methodology of vulnerability studies towards a common framework, which is one reason of the paper. We introduce a social vulnerability approach, which is compared with other approaches of bio-physical or sectoral vulnerability studies relatively developed in terms of a common methodology for index construction, guidelines for mapping, assessment of sensitivity, and verification of variables. Two approaches are commonly pursued in the literature. The first one is an additive approach, in which all potentially influential variables are weighted according to their importance for the vulnerability aspect, and then added to form a composite vulnerability index per unit area. The second approach includes variable reduction, mostly Principal Component Analysis (PCA) that reduces the number of variables that are interrelated into a smaller number of less correlating components, which are also added to form a composite index. We test these two approaches of constructing indices on the area of New York City as well as two different metrics of variables used as input and compare the outcome for the 5 boroughs of NY. Our analysis yields that the mapping exercise yields particularly different results in the outer regions and parts of the boroughs, such as Outer Queens and Staten Island. However, some of these parts, particularly the coastal areas receive the highest attention in the current adaptation policy. We imply from this that the current adaptation policy and practice in NY might need to be discussed, as these outer urban areas show relatively low social vulnerability as compared with the more central parts, i.e. the high dense areas of Manhattan, Central Brooklyn, Central Queens and the Southern Bronx. The inner urban parts receive lesser adaptation attention, but bear a higher risk of damage in case of hazards in those areas. This is conceivable, e.g., during large heatwaves, which would more affect more the inner and poorer parts of the city as compared with the outer urban areas. In light of the recent planning practice of NY one needs to question and discuss who in NY makes adaptation policy for whom, but the presented analyses points towards an under representation of the needs of the socially vulnerable population, such as the poor, the elderly, and ethnic minorities, in the current adaptation practice in New York City.

Keywords: vulnerability mapping, social vulnerability, additive approach, Principal Component Analysis (PCA), New York City, United States, adaptation, social sensitivity

Procedia PDF Downloads 398
92 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 120
91 Chemical, Biochemical and Sensory Evaluation of a Quadrimix Complementary Food Developed from Sorghum, Groundnut, Crayfish and Pawpaw Blends

Authors: Ogechi Nzeagwu, Assumpta Osuagwu, Charlse Nkwoala

Abstract:

Malnutrition in infants due to poverty, poor feeding practices, and high cost of commercial complementary foods among others is a concern in developing countries. The study evaluated the proximate, vitamin and mineral compositions, antinutrients and functional properties, biochemical, haematological and sensory evaluation of complementary food made from sorghum, groundnut, crayfish and paw-paw flour blends using standard procedures. The blends were formulated on protein requirement of infants (18 g/day) using Nutrisurvey linear programming software in ratio of sorghum(S), groundnut(G), crayfish(C) and pawpaw(P) flours as 50:25:10:15(SGCP1), 60:20:10:10 (SGCP2), 60:15:15:10 (SGCP3) and 60:10:20:10 (SGCP4). Plain-pap (fermented maize flour)(TCF) and cerelac (commercial complementary food) served as basal and control diets. Thirty weanling male albino rats aged 28-35 days weighing 33-60 g were purchased and used for the study. The rats after acclimatization were fed with gruel produced with the experimental diets and the control with water ad libitum daily for 35days. Effect of the blends on lipid profile, blood glucose, haematological (RBC, HB, PCV, MCV), liver and kidney function and weight gain of the rats were assessed. Acceptability of the gruel was conducted at the end of rat feeding on forty mothers of infants’ ≥ 6 months who gave their informed consent to participate using a 9 point hedonic scale. Data was analyzed for means and standard deviation, analysis of variance and means were separated using Duncan multiple range test and significance judged at 0.05, all using SPSS version 22.0. The results indicated that crude protein, fibre, ash and carbohydrate of the formulated diets were either comparable or higher than values in cerelac. The formulated diets (SGCP1- SGCP4) were significantly (P>0.05) higher in vitamin A and thiamin compared to cerelac. The iron content of the formulated diets SGCP1- SGCP4 (4.23-6.36 mg/100) were within the recommended iron intake of infants (0.55 mg/day). Phytate (1.56-2.55 mg/100g) and oxalate (0.23-0.35 mg/100g) contents of the formulated diets were within the permissible limits of 0-5%. In functional properties, bulk density, swelling index, % dispersibility and water absorption capacity significantly (P<0.05) increased and compared favourably with cerelac. The essential amino acids of the formulated blends were within the amino acid profile of the FAO/WHO/UNU reference protein for children 0.5 -2 years of age. Urea concentration of rats fed with SGCP1-SGCP4 (19.48 mmol/L),(23.76 mmol/L),(24.07 mmol/L),(23.65 mmol/L) respectively was significantly higher than that of rat fed cerelac (16.98 mmol/L); however, plain pap had the least value (9.15 mmol/L). Rats fed with SGCP1-SGCP4 (116 mg/dl), (119 mg/dl), (115 mg/dl), (117 mg/dl) respectively had significantly higher glucose levels those fed with cerelac (108 mg/dl). Liver function parameters (AST, ALP and ALT), lipid profile (triglyceride, HDL, LDL, VLDL) and hematological parameters of rats fed with formulated diets were within normal range. Rats fed SGCP1 gained more weight (90.45 g) than other rats fed with SGCP2-SGCP4 (71.65 g, 79.76 g, 75.68 g), TCF (20.13 g) and cerelac (59.06 g). In all the sensory attributes, the control was preferred with respect to the formulated diets. The formulated diets were generally adequate and may likely have potentials to meet nutrient requirements of infants as complementary food.

Keywords: biochemical, chemical evaluation, complementary food, quadrimix

Procedia PDF Downloads 175
90 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 72
89 The Influence of English Immersion Program on Academic Performance: Case Study at a Sino-US Cooperative University in China

Authors: Leah Li Echiverri, Haoyu Shang, Yue Li

Abstract:

Wenzhou-Kean University (WKU) is a Sino-US Cooperative University in China. It practices the English Immersion Program (EIP), where all the courses are taught in English. Class discussions and presentations are pervasively interwoven in designing students’ learning experiences. This WKU model has brought positive influences on students and is in some way ahead of traditional college English majors. However, literature to support the perceptions on the positive outcomes of this teaching and learning model remain scarce. The distinctive profile of Chinese-ESL students in an English Medium of Instruction (EMI) environment contributes further to the scarcity of literature compared to existing studies conducted among ESL learners in Western educational settings. Hence, the study investigated the students’ perceptions towards the English Immersion Program and determine how it influences Chinese-ESL students’ academic performance (AP). This research can provide empirical data that would be helpful to educators, teaching practitioners, university administrators, and other researchers in making informed decisions when developing curricular reforms, instructional and pedagogical methods, and university-wide support programs using this educational model. The purpose of the study was to establish the relationship between the English Immersion Program and Academic Performance among Chinese-ESL students enrolled at WKU for the academic year 2020-2021. Course length, immersion location, course type, and instructional design were the constructs of the English immersion program. English language learning, learning efficiency, and class participation were used to measure academic performance. Descriptive-correlational design was used in this cross-sectional research project. A quantitative approach for data analysis was applied to determine the relationship between the English immersion program and Chinese-ESL students’ academic performance. The research was conducted at WKU; a Chinese-American jointly established higher educational institution located in Wenzhou, Zhejiang province. Convenience, random, and snowball sampling of 283 students, a response rate of 10.5%, were applied to represent the WKU student population. The questionnaire was posted through the survey website named Wenjuanxing and shared to QQ or WeChat. Cronbach’s alpha was used to test the reliability of the research instrument. Findings revealed that when professors integrate technology (PowerPoint, videos, and audios) in teaching, students pay more attention. This contributes to the acquisition of more professional knowledge in their major courses. As to course immersion, students perceive WKU as a good place to study, providing them a high degree of confidence to talk with their professors in English. This also contributes to their English fluency and better pronunciation in their communication. In the construct of designing instruction, the use of pictures, video clips, and professors’ non-verbal communication, and demonstration of concern for students encouraged students to be more active in-class participation. Findings on course length and academic performance indicated that students’ perception regarding taking courses during fall and spring terms can moderately contribute to their academic performance. In conclusion, the findings revealed a significantly strong positive relationship between course type, immersion location, instructional design, and academic performance.

Keywords: class participation, English immersion program, English language learning, learning efficiency

Procedia PDF Downloads 177
88 Introducing, Testing, and Evaluating a Unified JavaScript Framework for Professional Online Studies

Authors: Caspar Goeke, Holger Finger, Dorena Diekamp, Peter König

Abstract:

Online-based research has recently gained increasing attention from various fields of research in the cognitive sciences. Technological advances in the form of online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. However, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we propose and test a new JavaScript framework that enables researchers to conduct any kind of behavioral research in the browser without the need to program a single line of code. In particular our framework offers the possibility to manipulate and combine the experimental stimuli via a graphical editor, directly in the browser. Moreover, we included an action-event system that can be used to handle user interactions, interactively change stimuli properties or store participants’ responses. Besides traditional recordings such as reaction time, mouse and keyboard presses, the tool offers webcam based eye and face-tracking. On top of these features our framework also takes care about the participant recruitment, via crowdsourcing platforms such as Amazon Mechanical Turk. Furthermore, the build in functionality of google translate will ensure automatic text translations of the experimental content. Thereby, thousands of participants from different cultures and nationalities can be recruited literally within hours. Finally, the recorded data can be visualized and cleaned online, and then exported into the desired formats (csv, xls, sav, mat) for statistical analysis. Alternatively, the data can also be analyzed online within our framework using the integrated Ipython notebook. The framework was designed such that studies can be used interchangeably between researchers. This will support not only the idea of open data repositories but also constitutes the possibility to share and reuse the experimental designs and analyses such that the validity of the paradigms will be improved. Particularly, sharing and integrating the experimental designs and analysis will lead to an increased consistency of experimental paradigms. To demonstrate the functionality of the framework we present the results of a pilot study in the field of spatial navigation that was conducted using the framework. Specifically, we recruited over 2000 subjects with various cultural backgrounds and consequently analyzed performance difference in dependence on the factors culture, gender and age. Overall, our results demonstrate a strong influence of cultural factors in spatial cognition. Such an influence has not yet been reported before and would not have been possible to show without the massive amount of data collected via our framework. In fact, these findings shed new lights on cultural differences in spatial navigation. As a consequence we conclude that our new framework constitutes a wide range of advantages for online research and a methodological innovation, by which new insights can be revealed on the basis of massive data collection.

Keywords: cultural differences, crowdsourcing, JavaScript framework, methodological innovation, online data collection, online study, spatial cognition

Procedia PDF Downloads 262
87 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 92