Search results for: the factory of producing alloy metals
1949 Paper-Based Detection Using Synthetic Gene Circuits
Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux
Abstract:
Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.Keywords: cell-free lysates, detection, gene circuits, in vitro
Procedia PDF Downloads 3941948 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmoor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 2511947 The Collapse of a Crane on Site: A Case Study
Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia
Abstract:
This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.Keywords: failure, metals, weld, microstructure
Procedia PDF Downloads 1261946 Impact of Collieries on Groundwater in Damodar River Basin
Authors: Rajkumar Ghosh
Abstract:
The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.Keywords: coal mining, groundwater, soil subsidence, water table, damodar river
Procedia PDF Downloads 801945 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces
Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto
Abstract:
In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel
Procedia PDF Downloads 3251944 Effect of Carbon Additions on FeCrNiMnTi High Entropy Alloy
Authors: C. D. Gomez-Esparza, Z. V. Hernandez-Castro, C. A. Rodriguez-Gonzalez, R. Martinez-Sanchez, A. Duarte-Moller
Abstract:
Recently, the high entropy alloys (HEA) are the focus of attention in metallurgical and materials science due to their desirable and superior properties in comparison to conventional alloys. The HEA field has promoted the exploration of several compositions including the addition of non-metallic elements like carbon, which in traditional metallurgy is mainly used in the steel industry. The aim of this work was the synthesis of equiatomic FeCrNiMnTi high entropy alloys, with minor carbon content, by mechanical alloying and sintering. The effect of the addition of carbon nanotubes and graphite were evaluated by X-ray diffraction, scanning electron microscopy, and microhardness test. The structural and microstructural characteristics of the equiatomic alloys, as well as their hardness were compared with those of an austenitic AISI 321 stainless steel processed under the same conditions. The results showed that porosity in bulk samples decreases with carbon nanotubes addition, while the equiatomic composition favors the formation of titanium carbide and increased the AISI 321 hardness more than three times.Keywords: carbon nanotubes, graphite, high entropy alloys, mechanical alloying
Procedia PDF Downloads 1981943 An Overview and Analysis of ChatGPT 3.5/4.0
Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas
Abstract:
This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.Keywords: artificial intelligence, chat GPT, analysis, education
Procedia PDF Downloads 501942 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach
Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra
Abstract:
Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis
Procedia PDF Downloads 2371941 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes
Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng
Abstract:
The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium
Procedia PDF Downloads 3521940 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery
Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi
Abstract:
Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants
Procedia PDF Downloads 5041939 A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area
Authors: P. Thepnarintra, S. Nikorn
Abstract:
Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country.Keywords: agricultural machinery, manufacturers, problems, on running the business
Procedia PDF Downloads 2921938 Surface Roughness of AlSi/10%AlN Metal Matrix Composite Material Using the Taguchi Method
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Mohd Asri Selamat
Abstract:
This paper presents the surface roughness of the Aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN), with three types of carbide inserts. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L27 (34). The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of machining parameters in measuring the surface roughness during the milling operation. The analysis of results, using the Taguchi method concluded that a combination of low feed rate, medium depth of cut, low cutting speed, and insert TiB2 give a better value of surface roughness. From Taguchi method, it was found that cutting speed of 230m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.5mm and type of insert of TiB2 were the optimal machining parameters that gave the optimal value of surface roughness.Keywords: AlSi/AlN Metal Matrix Composite (MMC), surface roughness, Taguchi method
Procedia PDF Downloads 4621937 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance
Procedia PDF Downloads 3921936 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan
Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf
Abstract:
Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor
Procedia PDF Downloads 5841935 Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal
Authors: M. Javadzadeh, H. Khoshsima
Abstract:
In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm.Keywords: liquid crystal, lens, Fresnel zone, diffraction, Fresnel lens
Procedia PDF Downloads 2041934 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution
Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim
Abstract:
Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion
Procedia PDF Downloads 6591933 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L
Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar
Abstract:
Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness
Procedia PDF Downloads 2501932 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints
Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl
Abstract:
The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction
Procedia PDF Downloads 4391931 Application of Mesenchymal Stem Cells in Diabetic Therapy
Authors: K. J. Keerthi, Vasundhara Kamineni, A. Ravi Shanker, T. Rammurthy, A. Vijaya Lakshmi, Q. Hasan
Abstract:
Pancreatic β-cells are the predominant insulin-producing cell types within the Islets of Langerhans and insulin is the primary hormone which regulates carbohydrate and fat metabolism. Apoptosis of β-cells or insufficient insulin production leads to Diabetes Mellitus (DM). Current therapy for diabetes includes either medical management or insulin replacement and regular monitoring. Replacement of β- cells is an attractive treatment option for both Type-1 and Type-2 DM in view of the recent paper which indicates that β-cells apoptosis is the common underlying cause for both the Types of DM. With the development of Edmonton protocol, pancreatic β-cells allo-transplantation became possible, but this is still not considered as standard of care due to subsequent requirement of lifelong immunosuppression and the scarcity of suitable healthy organs to retrieve pancreatic β-cell. Fetal pancreatic cells from abortuses were developed as a possible therapeutic option for Diabetes, however, this posed several ethical issues. Hence, in the present study Mesenchymal stem cells (MSCs) were differentiated into insulin producing cells which were isolated from Human Umbilical cord (HUC) tissue. MSCs have already made their mark in the growing field of regenerative medicine, and their therapeutic worth has already been validated for a number of conditions. HUC samples were collected with prior informed consent as approved by the Institutional ethical committee. HUC (n=26) were processed using a combination of both mechanical and enzymatic (collagenase-II, 100 U/ml, Gibco ) methods to obtain MSCs which were cultured in-vitro in L-DMEM (Low glucose Dulbecco's Modified Eagle's Medium, Sigma, 4.5 mM glucose/L), 10% FBS in 5% CO2 incubator at 37°C. After reaching 80-90% confluency, MSCs were characterized with Flowcytometry and Immunocytochemistry for specific cell surface antigens. Cells expressed CD90+, CD73+, CD105+, CD34-, CD45-, HLA-DR-/Low and Vimentin+. These cells were differentiated to β-cells by using H-DMEM (High glucose Dulbecco's Modified Eagle's Medium,25 mM glucose/L, Gibco), β-Mercaptoethanol (0.1mM, Hi-Media), basic Fibroblast growth factor (10 µg /L,Gibco), and Nicotinamide (10 mmol/L, Hi-Media). Pancreatic β-cells were confirmed by positive Dithizone staining and were found to be functionally active as they released 8 IU/ml insulin on glucose stimulation. Isolating MSCs from usually discarded, abundantly available HUC tissue, expanding and differentiating to β-cells may be the most feasible cell therapy option for the millions of people suffering from DM globally.Keywords: diabetes mellitus, human umbilical cord, mesenchymal stem cells, differentiation
Procedia PDF Downloads 2591930 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications
Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana
Abstract:
A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons
Procedia PDF Downloads 2461929 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program
Authors: F. Maass, P. Martin, J. Olivares
Abstract:
The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.Keywords: education, geogebra, ordinary differential equations, resonance
Procedia PDF Downloads 2451928 Chromium Adsorption by Modified Wood
Authors: I. Domingos, B. Esteves, A. Figueirinha, Luísa P. Cruz-Lopes, J. Ferreira, H. Pereira
Abstract:
Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.Keywords: adsorption, chromium, heat treatment, wood modification
Procedia PDF Downloads 4991927 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.
Authors: Grecco M. Ante, Princess Rochelle O. Gan
Abstract:
Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite
Procedia PDF Downloads 4651926 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation
Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser
Abstract:
Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results.Keywords: crash box, Notch triggering, energy absorption, FEM simulation
Procedia PDF Downloads 4591925 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 2331924 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers
Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong
Abstract:
Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.Keywords: clad pipe, lamination layer parameters, monel, overlay welding
Procedia PDF Downloads 2731923 Wetting Properties of Silver Based Alloys
Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai
Abstract:
The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.Keywords: contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting
Procedia PDF Downloads 4131922 Cultivation of Halophytes: Effect of Salinity on Nutritional and Functional Properties
Authors: Luisa Barreira, Viana Castaneda, Maria J. Rodrigues, Florinda Gama, Tamara Santos, Marta Oliveira, Catarina Pereira, Maribela Pestana, Pedro Correia, Miguel Salazar, Carla Nunes, Luisa Custodio, Joao Varela
Abstract:
In the last century, the world witnessed an exponential demographic increase that has put an enormous pressure on agriculture and food production. Associated also with climate changes, there has been a decrease in the amount of available freshwater and an increased salinization of soils which can affect the production of most food crops. Halophytes, however, are plants able to withstand high salinities while maintaining a good growth productivity. To cope with the excess salt, they produce secondary metabolites (e.g. vitamins and phenolic compounds) which, along with the natural presence of some minerals, makes them not only nutritionally rich but also functional foods. Some halophytes, as quinoa or salicornia, are already used in some countries, mostly as gourmet food. Hydroponic cultivation of halophytes using seawater or diluted seawater for watering can decrease the pressure on freshwater resources while producing a nutritional and functional food. The XtremeGourmet project funded by the EU aims to develop and optimize the production of different halophytes by hydroponics. One of the more specific objectives of this project is the study of halophytes’ productivity and chemical composition under different abiotic conditions, e.g. salt and nutrient concentration and light intensity. Three species of halophytes commonly occurring in saltmarshes of the South of Portugal (Inula chrithmoides, Salicornia ramosissima and Mesembryanthemum nodiflorum) were cultivated using hydroponics under different salinities, ranging from 5 to 45 dS/m. For each condition, several parameters were assessed namely: total and commercial productivity, electrical conductivity, total soluble solids, proximal composition, mineral profile, total phenolics, flavonoids and condensed tannins content and antioxidant activity. Results show that productivity was significantly reduced for all plants with increasing salinity up to salinity 29 dS/m and remained low onwards. Oppositely, the electrical conductivity and the total soluble solids content of the produced plants increased with salinity, reaching a plateau at 29 dS/m. It seems that plants reflect the salt concentration of the water up to some point, being able to regulate their salt content for higher salinities. The same tendency was observed for the ash content of these plants, which is related to the mineral uptake from the cultivating media and the plants’ capacity to both accumulate and regulate ions’ concentration in their tissues. Nonetheless, this comes with a metabolic cost which is observed by a decrease in productivity. The mineral profile of these plants shows high concentrations of sodium but also high amounts of potassium. In what concerns the microelements, these plants appear to be a good source of manganese and iron and the low amounts of toxic metals account for their safe consumption in moderate amounts. Concerning the phenolics composition, plants presented moderate concentrations of phenolics but high amounts of condensed tannins, particularly I. crithmoides which accounts for its characteristic sour and spicy taste. Contrary to some studies in which higher amounts of phenolics were found in plants cultivated under higher salinities, in this study, the highest amount of phenolic compounds were found in plants grown at the lowest or intermediate salinities. Nonetheless, there was a positive correlation between the concentration of these compounds and the antioxidant capacity of the plants’ extracts.Keywords: functional properties, halophytes, hydroponics, nutritional composition, salinity effect
Procedia PDF Downloads 2701921 Effect of Co-doping on Polycrystalline Ni-Mn-Ga
Authors: Mahsa Namvari, Kari Ullakko
Abstract:
It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth
Procedia PDF Downloads 951920 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA).Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates
Procedia PDF Downloads 333