Search results for: reinforced concrete panels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2885

Search results for: reinforced concrete panels

1385 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 218
1384 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: thermal, mechanical, composites, square tubes

Procedia PDF Downloads 380
1383 A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim

Abstract:

In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite

Procedia PDF Downloads 391
1382 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 121
1381 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements

Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong

Abstract:

Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.

Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite

Procedia PDF Downloads 298
1380 A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period.

Keywords: smart building envelope, thermal performance, phase change material, energy efficiency, large-scale sandwich panel

Procedia PDF Downloads 723
1379 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 353
1378 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 168
1377 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 320
1376 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers

Authors: Samah Said, Muhsin Elie Rahhal

Abstract:

Due to the COVID-19 pandemic, disposable plastic-based face masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Add to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similarly to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.

Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance

Procedia PDF Downloads 89
1375 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 80
1374 The Documentation of Modernisation Processes in Spain Based on the Residential Architecture of the 1960s. A Patrimonial Perspective on El Plantinar Neighbourhood in Seville

Authors: Julia Rey-Pérez, Julia Díaz Borrego

Abstract:

The modernisation process of the city of Sevilla in Spain and the transformation of the city took place through national and local government initiatives from the 1960s onwards. Part of these actions was the execution of numerous residential neighbourhoodsthat prepared Sevilla for the change of era. This process was possible thanks to the implementation of public policies that showed the imminent need for new architectural programmes, as well as for high-rise architecture built in reinforced concrete. However, very little is known to this day about the modernisation process in Sevilla and the development of these neighbourhoods, which were designed to house a large number of people and are today a key reference point in the Historic Urban Landscape of the city of Seville. Therefore, the present research aims to learn and reflect upon the urban transformation of the city at this time andto deepen the heritage uniqueness of these neighbourhoods, as is the case of ElPlantinarneighbourhood.The methodology proposed for this research is structured in three phases, where in the first stage, a general study of the El Plantinarneighbourhood was carried out on three scales: urban, object-typological and perceptive. In the second stage, the cultural attributes and values of the urban complex in question were identified in order to determine whether the case study is truly representative of the beginnings of modernity in Spain and whether it needs a heritage approach. Finally, a third phase is proposed in which criteria will be defined on how to intervene in this neighbourhood to guarantee its presence in the urban landscape of the city of Seville. The expected results will help to understand the process of modernisation that the city has undergone, as well as the heritage value of this architecture in the construction of the collective memory.

Keywords: modern heritage, urban obsolescence, methodology, develop

Procedia PDF Downloads 145
1373 Historical Geotechnical Study and Evaluation of Project Progress for the Tafila City Center Development Project

Authors: Mohmd Sarireh

Abstract:

The geotechnical study can be employed successfully to assess and follow the expected development or delay in the project construction. The development project of city center or downtown was taken as a case study for the investigation of the project conditions that might support progress or cause delay. The project was proposed to build 7447 m2 by reinforced concrete mainly to serve and support the services provided to people in Tafila. The project construction had faced challenges and obstacles such as soil collapse because of excavation of the weak soil that found in the project site. In addition, the topography of the project area showed a high slope from South-West to North. The slope through the project footprint reached to 83.3% which is considered very high slope. One year and a half proposed to finish the project construction since the 1st of March 2013 and it was planned to be finished by the 31th of August 2014, but the project needs more than one year and a half as extension according to the consultant engineer. The collecting of data was conducted through the interviews with the engineers and officials, and by analyzing the soil reports and samples taken during design and excavation. The major findings came out to weak and fractured soil and construction waste that were found at project site. Also, soil was considered very fine according to the plasticity index (PI) values, in addition to the high depths required for foundation that contribute to the collapse of soil and the increase of project cost. The current project aims to present how the unseen conditions can delay the project construction and increase the cost of the project that rises to JD8.305 Million.

Keywords: geotechnical, management, progress, risk, soil unseen conditions management

Procedia PDF Downloads 216
1372 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 109
1371 Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity

Authors: Veerapat Kitsawat, Muenduen Phisalaphong

Abstract:

Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications.

Keywords: alginate, composite, graphite, natural rubber

Procedia PDF Downloads 76
1370 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements

Authors: M. A. García, J. Vinolas, A. Hernando

Abstract:

Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.

Keywords: magnetoelastic, magnetic induction, mechanical stress, steel

Procedia PDF Downloads 36
1369 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 173
1368 The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite

Authors: Rajesh Panda, Jimi Tjong, Sanjay K. Nayak, Mohini M. Sain

Abstract:

The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix.

Keywords: phenalkamine, sisal fiber, vacuum infusion, cashew nutshell liquid, cashew nutshell liquid (CSNL)

Procedia PDF Downloads 266
1367 Sepiolite as a Processing Aid in Fibre Reinforced Cement Produced in Hatschek Machine

Authors: R. Pérez Castells, J. M. Carbajo

Abstract:

Sepiolite is used as a processing aid in the manufacture of fibre cement from the start of the replacement of asbestos in the 80s. Sepiolite increases the inter-laminar bond between cement layers and improves homogeneity of the slurries. A new type of sepiolite processed product, Wollatrop TF/C, has been checked as a retention agent for fine particles in the production of fibre cement in a Hatschek machine. The effect of Wollatrop T/FC on filtering and fine particle losses was studied as well as the interaction with anionic polyacrylamide and microsilica. The design of the experiments were factorial and the VDT equipment used for measuring retention and drainage was modified Rapid Köethen laboratory sheet former. Wollatrop TF/C increased the fine particle retention improving the economy of the process and reducing the accumulation of solids in recycled process water. At the same time, drainage time increased sharply at high concentration, however drainage time can be improved by adjusting APAM concentration. Wollatrop TF/C and microsilica are having very small interactions among them. Microsilica does not control fine particle losses while Wollatrop TF/C does efficiently. Further research on APAM type (molecular weight and anionic character) is advisable to improve drainage.

Keywords: drainage, fibre-reinforced cement, fine particle losses, flocculation, microsilica, sepiolite

Procedia PDF Downloads 321
1366 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, designbuilder

Procedia PDF Downloads 192
1365 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 206
1364 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 130
1363 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates

Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek

Abstract:

The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.

Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates

Procedia PDF Downloads 278
1362 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation

Procedia PDF Downloads 86
1361 Design and Modeling of Amphibious Houses for Flood Prone Areas: The Case of Nigeria

Authors: Onyebuchi Mogbo, Abdulsalam Mohammed, Salsabila Wali

Abstract:

This research discusses the design and modeling of an amphibious building. The amphibious building is a house with the function of floating during a flood event. Over the years, houses have been built to resist flood events some of which have failed. The floating house is designed to work with nature and not against it. In the event of a flood, the house will rise with the increasing water level and protect the house from sinking. For the design and modeling of this house an estimated cost of N250, 000, approximately $700, will be needed. It is expected that the house will rise when lightweight materials are incorporated in the design, and the concrete dock (in form of a hollow box) carrying the entire house in its hollow space is well designed. When there is flooding the water will fill up the concrete dock, and the house will rise upwards with vertical guides preventing it from moving side to side or out of its boundary. Architectural and Structural designs will be used in this project.

Keywords: amphibious building, flood, housing, design and modelling

Procedia PDF Downloads 172
1360 Transition from Linear to Circular Economy in Gypsum in India

Authors: Shanti Swaroop Gupta, Bibekananda Mohapatra, S. K. Chaturvedi, Anand Bohra

Abstract:

For sustainable development in India, there is an urgent need to follow the principles of industrial symbiosis in the industrial processes, under which the scraps, wastes, or by‐products of one industry can become the raw materials for another. This will not only help in reducing the dependence on natural resources but also help in gaining economic advantage to the industry. Gypsum is one such area in India, where the linear economy model of by-product gypsum utilization has resulted in unutilized legacy phosphogypsum stock of 64.65 million tonnes (mt) at phosphoric acid plants in 2020-21. In the future, this unutilized gypsum stock will increase further due to the expected generation of Flue Gas Desulphurization (FGD) gypsum in huge quantities from thermal power plants. Therefore, it is essential to transit from the linear to circular economy in Gypsum in India, which will result in huge environmental as well as ecological benefits. Gypsum is required in many sectors like Construction (Cement industry, gypsum boards, glass fiber reinforced gypsum panels, gypsum plaster, fly ash lime bricks, floor screeds, road construction), agriculture, in the manufacture of Plaster of Paris, pottery, ceramic industry, water treatment processes, manufacture of ammonium sulphate, paints, textiles, etc. The challenges faced in areas of quality, policy, logistics, lack of infrastructure, promotion, etc., for complete utilization of by-product gypsum have been discussed. The untapped potential of by-product gypsum utilization in various sectors like the use of gypsum in agriculture for sodic soil reclamation, utilization of legacy stock in cement industry on mission mode, improvement in quality of by-product gypsum by standardization and usage in building materials industry has been identified. Based on the measures required to tackle the various challenges and utilization of the untapped potential of gypsum, a comprehensive action plan for the transition from linear to the circular economy in gypsum in India has been formulated. The strategies and policy measures required to implement the action plan to achieve a circular economy in Gypsum have been recommended for various government departments. It is estimated that the focused implementation of the proposed action plan would result in a significant decrease in unutilized gypsum legacy stock in the next five years and it would cease to exist by 2027-28 if the proposed action plan is effectively implemented.

Keywords: circular economy, FGD gypsum, India, phosphogypsum

Procedia PDF Downloads 262
1359 Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates

Authors: Débora C. Mendes, Matthias Eckert, Cláudia S. Moço, Hélio Martins, Jean-Pierre P. Gonçalves, Miguel Oliveira, José P. Da Silva

Abstract:

Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 342
1358 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 198
1357 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 320
1356 Increase the Ductility of Tall Buildings Using Green Material Bamboo for Earthquake Zone

Authors: Shef Amir Arasy

Abstract:

In 2023, the world's population will be 7.8 billion, which has increased significantly in the last 20 years. Every country in the world is experiencing the impacts of climate change directly and indirectly. However, the community still needs to build massive infrastructure and buildings. The massive CO2 emissions which lead to climate change come from cement usage in construction activity. Bamboo is one of the most sustainable materials for reducing carbon emissions and releasing more than 30% oxygen compared to the mass of trees. Besides, bamboo harvest time is faster than other sustainable materials, around 3-4 years. Furthermore, Bamboo has a high tensile strength, which can provide ductility effectively to prevent damage to buildings during an earthquake. By the finite element method, this research analyzes bamboo configuration and connection for tall building structures under different earthquake frequencies and fire. The aim of this research is to provide proper design and connection of bamboo buildings that can be more reliable than concrete structures.

Keywords: bamboo, concrete, ductility, earthquake.

Procedia PDF Downloads 62