Search results for: inverse saturable absorption
623 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength
Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain
Abstract:
Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.Keywords: surface morphology, processed films, polyvinyl alcohol, templated polyanilines, tensile testing
Procedia PDF Downloads 214622 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete
Authors: Anil Nis, Nilufer Ozyurt Zihnioglu
Abstract:
The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber
Procedia PDF Downloads 223621 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves
Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal
Abstract:
Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC
Procedia PDF Downloads 147620 Efficacy of Eutectic Mixture of Local Anaesthetics and Diclofenac Spray in Attenuating Intravenous Cannulation Pain- Paeallel Randomized Trial
Authors: Anju Rani, Geeta, Sudha Rani, Choudhary, Puhal
Abstract:
Method- A total of 300 patients were studied, with 100 patients in each group. Patients aged 16-60 years, ASA grade I and II undergoing elective general surgical, urology and orthopedic procedures were included in the study. The patients were randomly allocated to any of the three groups by Using Sealed envelopes. 1. Group A: EMLA (eutectic mixture of 2.5% lidocaine with 2.5% prilocaine) - Patients receiving eutectic Lidocaine/ Prilocaine cream (2gm/10cm2) of Prilox cream), for 60- 70 min under occlusive dressing. 2. Group B - Patients receiving topical diclofenac 4 % spray gel for 60- 70 min, covering an absorption area of 50 cm2 3. Group C: control – Direct cannulation was done without any intervention. Results - Group B showed significantly least number of patients complaining pain on IV cannulation in comparison to group A and group C. The Mean VAS scores were found to be maximum in GROUP C: control-8.76 ± 4.14, then in GROUP A: EMLA- 2.54 ± 4.21.and least in GROUP B: Diclofenac 4% spray-1.13 ± 3.05. Erythema, induration and edema were significantly reported to be higher for the control group. Also group A patients reported adverse skin reactions more than patients in group B. Conclusion - It can be concluded that diclofenac spray 4 % and EMLA cream are effective in reducing the incidence and severity of venous cannulation pain as compared to the control group. However, a higher incidence of skin blanching, erythema, and oedema associated with EMLA cream and a lower incidence of these adverse effects favours the use of diclofenac spray 4%. They are promising agents for the treatment of venous cannulation pain.Keywords: diclofenac spray, EMLA, intravenous, pain
Procedia PDF Downloads 157619 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.Keywords: biosorption, ICP-AES, lead (Pb), SEM
Procedia PDF Downloads 384618 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer
Authors: W. Sornlar, S. Supothina, A. Wannagon
Abstract:
Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity
Procedia PDF Downloads 181617 Proximate Composition, Colour and Sensory Properties of Akara egbe Prepared from Bambara Groundnut (Vigna subterranea)
Authors: Samson A. Oyeyinka, Taiwo Tijani, Adewumi T. Oyeyinka, Mutiat A. Balogun, Fausat L. Kolawole, John K. Joseph
Abstract:
Bambara groundnut is an underutilised leguminous crop that has a similar composition to cowpea. Hence, it could be used in making traditional snack usually produced from cowpea paste. In this study, akara egbe, a traditional snack was prepared from Bambara groundnut flour or paste. Cowpea was included as the reference sample. The proximate composition and functional properties of the flours were studies as well as the proximate composition and sensory properties of the resulting akara egbe. Protein and carbohydrate were the main components of Bambara groundnut and cowpea grains. Ash, fat and fiber contents were low. Bambara groundnut flour had higher protein content (23.71%) than cowpea (19.47%). In terms of functional properties, the oil absorption capacity (0.75 g oil/g flour) of Bambara groundnut flour was significantly (p ≤ 0.05) lower than that of the cowpea (0.92 g oil/g flour), whereas, Cowpea flour absorbed more water (1.59 g water/g flour) than Bambara groundnut flour (1.12 g/g). The packed bulk density (0.92 g/mL) of Bambara groundnut was significantly (p ≤ 0.05) higher than cowpea flour (0.82 g/mL). Akara egbe prepared from Bambara groundnut flour showed significantly (p ≤ 0.05) higher protein content (23.41%) than the sample made from Bambara groundnut paste (19.35%). Akara egbe prepared from cowpea paste had higher ratings in aroma, colour, taste, crunchiness and overall acceptability than those made from cowpea flour or Bambara groundnut paste or flour. Bambara groundnut can produce akara egbe with comparable nutritional and sensory properties to that made from cowpea.Keywords: Bambara groundnut, Cowpea, Snack, Sensory properties
Procedia PDF Downloads 264616 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀
Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz
Abstract:
Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.Keywords: metallic glass, magnesium, melt spinning, amorphous alloys
Procedia PDF Downloads 237615 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF
Authors: Sezen Gurdag, Ayse Ebru Akin
Abstract:
There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive
Procedia PDF Downloads 159614 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink
Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet
Abstract:
Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt
Procedia PDF Downloads 221613 Influence of Laser Excitation on SERS of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)
Procedia PDF Downloads 333612 Investigation of an Approach in Drug Delivery: Orally Fast Disintegrating Tablets
Authors: Tansel Comoglu
Abstract:
Orally fast disintegrating tablets (FDTs or ODTs) have become popular during the last decade, and manufacturing of ODTs is getting a rapidly growing area in the pharmaceutical industry. The concept of ODTs has emerged from the desire to provide patients with more conventional means of taking their medication. Drugs, that have satisfactory absorption from the oral mucosa or aimed for immediate therapeutic activity can be formulated in ODTs. After placing the ODT into the mouth, these tablets dissolve or disintegrate in the mouth usullay less than a minute, in the absence of additional water. Even though the ODT technology has taken an important path, as proved by a large group of commercial products on the drug market, there are so many problems to be solved in ODT formulations such as; formulation of hydrophobic drugs is stil a challenge, especially when the amount of drug is high. As these tablets dissolve or disintegrate in the mouth without the need of additional water, taste masking of active ingredients becomes essential in these systems because the drug is entirely released in the mouth. In ODT technology, coping with the taste of drugs is still a challenge. Resins or sweeteners or other techniques are also used in the formulation to aid taste-masking of the API. Another important factor to consider is whether they can be manufactured using conventional equipment and processes, as this will have a positive influence on manufacturing costs. Some products, however, may require a more costly, special unitdose packaging if the dosage form is fragile. In this overview, benefits, various formulation technologies, clinical studies and some future research trends of ODTs will be discussed.Keywords: orally fast disintegrating tablets, benefits, formulation technologies, future research trends
Procedia PDF Downloads 360611 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites
Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate
Abstract:
In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity
Procedia PDF Downloads 361610 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System
Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad
Abstract:
In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress
Procedia PDF Downloads 429609 Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles: Characterization and Applications
Authors: Surendra Kumar Gautam, Mahesh Dhungana
Abstract:
Magnesium oxide nanoparticles (MgO NPs) are less toxic to humans and the environment as compared to other metal oxide nanoparticles. Various conventional chemical and physical methods are used for synthesis whose toxicity level is high and highly expensive. As the best alternative, phyto-assisted synthesis has emerged, which uses extracts from plant parts for the synthesis of nanoparticles. Here, we report the synthesis of MgO nanoparticles with the assistance of beetroot extract and leaf extract of P. guajava and A. adenophora. The synthesized MgO NPs were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and UV-visible spectroscopy. X-ray analysis for the broadening of peaks was used to evaluate the crystallite size and lattice strain using Debye-Scherer and Williamson–Hall method. The results of crystallite size obtained by both methods are in close proximity. The crystallite size obtained by the Williamson-Hall method seems more accurate, with values being 8.1 nm and 13.2 nm for beetroot MgO NPs and P. guajava MgO NPs, respectively. The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. The UV-visible absorption spectra of MgO NPs were found to be 310 nm, 315 nm, and 315 nm for beetroot, P. guajava, and A. adenophora leaf extract, respectively. Among the three samples, beetroot-mediated MgO NPs were effective antibacterial against both gram-positive and Gram-negative bacteria. In addition, synthesized MgO NPs also show significant antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl radical. Further, beetroot MgO NPs showed the highest photocatalytic activity of about 91% in comparison with other samples.Keywords: MgO NPs, XRD, FTIR, antibacterial, antioxidant and photocatalytic activity
Procedia PDF Downloads 84608 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective
Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada
Abstract:
The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond
Procedia PDF Downloads 288607 Study of the Suitability for the Use of Gravel in the Regions around Araz River in Karabakh as a Concrete Aggregate
Authors: S. B. Shahmarova, F. N. Iskandarli, J. T. Zeynalov, F. N. Mammadov, M. M. Mirzayev, F. Y. Bayramov
Abstract:
The physical, mechanical, and chemical properties of aggregates play an important role in the production of ready-mixed concrete. Furthermore, the alkali-silicate reaction of aggregates is one of the essential factors in construction projects for the durability and longer service life of buildings and construction structures to be built. It is necessary to use the aggregates from the liberated regions of Karabakh and East Zangazur in the preparation of concretes to be produced for reconstruction and renovation projects in those regions. In this regard, the study of the physical and mechanical properties of aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) became a significant issue. So, gravel samples were taken from seven different sources located in the regions around Araz River, where the quarries are planned to be built. The chemical oxide composition of the samples was determined, water absorption and specific gravity tests, chloride, alkali-silicate reaction tests, aggregate crushing strength test, Los Angeles, and frost resistance (into the solution of MgSO₄ and Na₂SO₄) tests were performed, and the results were evaluated in accordance with the relevant standards. As a result, it was determined that the aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) conform to the relative standards and can be used effectively in the production of various concretes to be used for the projects in Karabakh.Keywords: aggregates of the regions around Araz River (Fuzuli, Jabrayil, and Zangilan), physical and mechanical properties, alkali-silicate reaction, Karabakh, Azerbaijan
Procedia PDF Downloads 93606 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)
Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad
Abstract:
Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity
Procedia PDF Downloads 499605 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films
Authors: Padmalochan Panda, R. Ramaseshan
Abstract:
Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.Keywords: ellipsometry, GIXRD, hardness, XAS
Procedia PDF Downloads 114604 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone
Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay
Abstract:
Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.
Procedia PDF Downloads 147603 Lead and Cadmium Residue Determination in Spices Available in Tripoli City Markets (Libya)
Authors: Mohamed Ziyaina, Ahlam Rajab, Khadija Alkhweldi, Wafia Algami, Omer Al. Toumi, Barbara Rasco1
Abstract:
In recent years, there has been a growing interest in monitoring heavy metal contamination in food products. Spices can improve the taste of food and can also be a source of many bioactive compounds but can unfortunately, also be contaminated with dangerous materials, potentially heavy metals. This study was conducted to investigate lead (Pb) and cadmium (Cd) contamination in selected spices commonly consumed in Libya including Capsicum frutescens (chili pepper) Piper nigrum, (black pepper), Curcuma longa (turmeric), and mixed spices (HRARAT) which consist of a combination of: Alpinia officinarum, Zingiber officinale and Cinnamomum zeylanicum. Spices were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide. The highest level of lead (Pb) was found in Curcuma longa and Capsicum frutescens in wholesale markets (1.05 ± 0.01 mg/kg, 0.96 ± 0.06 mg/kg). Cadmium (Cd) levels exceeded FAO/WHO permissible limit. Curcuma longa and Piper nigrum sold in retail markets had a high concentration of Cd (0.36 ± 0.09, 0.35 ± 0.07 mg/kg, respectively) followed by (0.32 ± 0.04 mg/kg) for Capsicum frutescens. Mixed spices purchased from wholesale markets also had high levels of Cd (0.31 ± 0.08 mg/kg). Curcuma longa and Capsicum frutescens may pose a food safety risk due to high levels of lead and cadmium. Cadmium levels exceeded FAO/WHO recommendations (0.2 ppm) for Piper nigrum, Curcuma longa, and mixed spices (HRARAT).Keywords: heavy metals, lead, cadmium determination, spice
Procedia PDF Downloads 641602 Origamic Forms: A New Realm in Improving Acoustical Environment
Authors: Mostafa Refat Ismail, Hazem Eldaly
Abstract:
The adaptation of architecture design to building function is getting highly needed in contemporary designs, especially with the great progression in design methods and tools. This, in turn, requires great flexibility in design strategies, as well as a wider spectrum of space settings to achieve the required environment that special activities imply. Acoustics is an essential factor influencing cognitive acts and behavior as well as, on the extreme end, the physical well-being inside a space. The complexity of this constrain is fueled up by the extended geometric dimensions of multipurpose halls, making acoustic adequateness a great concern that could not easily be achieved for each purpose. To achieve a performance oriented acoustic environment, various parametric shaped false ceilings based on origami folded notion are simulated. These parametric origami shapes are able to fold and unfold forming an interactive structure that changes the mutual acoustic environment according to the geometric shapes' position and its changing exposed surface areas. The mobility of the facets in the origami surface can stretch up the range from a complete plain surface to an unfolded element where a considerable amount of absorption is added to the space. The behavior of the parametric origami shapes are being modeled employing a ray tracing computer simulation package for various shapes topology. The conclusion shows a great variation in the acoustical performance due to the variation in folding faces of the origami surfaces, which cause different reflections and consequently large variations in decay curves.Keywords: parametric, origami, acoustics, architecture
Procedia PDF Downloads 285601 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers
Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka
Abstract:
The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose
Procedia PDF Downloads 619600 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2
Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti
Abstract:
A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays
Procedia PDF Downloads 451599 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.Keywords: bubble pump, drift flow model, instability, simulation
Procedia PDF Downloads 262598 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine
Authors: Ghulam Murshid
Abstract:
Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.Keywords: amino acids, co2, global warming, solubility
Procedia PDF Downloads 414597 Concentration of Zinc Micronutrients in Breast Milk Based on Determinant of Mother and Baby in Kassi-Kassi Health Center
Authors: Andi Tenri Ayu Rahman, Citrakesumasari, Devintha Virani
Abstract:
Breast milk is the complex biological fluid mix of macronutrient and micronutrient that are considered as perfect food for babies. Zinc has a role in various biological functions and physical growth. This research aims to know the average zinc (Zn) micronutrients content of breast milk by determinants of infant (birth weight) and mother (nutritional status and food intake) and description of the pattern of mothers breastfeeding. The type of research used is observational analytic with cross-sectional study design. The population was 41 mothers in Kassi-Kassi health center within one month. Sample research is mothers who gave birth at term and breastfed her baby. Sampling was done with random sampling technique involving 37 people. Samples of breast milk were analyzed in the laboratory by using the method of Atomic Absorption Spectrofotometry (AAS). This research find that from the samples (n=37) the average contents of zinc in the breast milk is 0,88±0,54 mg/L with the highest value on the group of low birth weight babies (1,13 ± 0,67mg/L), mothers who had normal nutritional status (0,981 ± 0,514 mg/L) and intake low zinc (0,94 ± 0,54 mg/L). Regarding breastfeeding pattern, 67,6% of the samples had had breastfeeding experience and 81,1% of breastfed more than eight times a day. In summary, the highest average value of the zinc content of breast milk was in the group of low birth weight babies, mother with normal nutritional status, and mothers having relatively low intake pattern.Keywords: zinc, breastmilk, mother, baby
Procedia PDF Downloads 191596 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.Keywords: sources of water supply, water quality, water supply, Thailand
Procedia PDF Downloads 295595 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes
Authors: Anita Singh, Richa Naula, Manoj Raghav
Abstract:
Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.Keywords: genotypes, macronutrients, micronutrient, protein, seeds
Procedia PDF Downloads 254594 Influence of Pretreatment Magnetic Resonance Imaging on Local Therapy Decisions in Intermediate-Risk Prostate Cancer Patients
Authors: Christian Skowronski, Andrew Shanholtzer, Brent Yelton, Muayad Almahariq, Daniel J. Krauss
Abstract:
Prostate cancer has the third highest incidence rate and is the second leading cause of cancer death for men in the United States. Of the diagnostic tools available for intermediate-risk prostate cancer, magnetic resonance imaging (MRI) provides superior soft tissue delineation serving as a valuable tool for both diagnosis and treatment planning. Currently, there is minimal data regarding the practical utility of MRI for evaluation of intermediate-risk prostate cancer. As such, the National Comprehensive Cancer Network’s guidelines indicate MRI as optional in intermediate-risk prostate cancer evaluation. This project aims to elucidate whether MRI affects radiation treatment decisions for intermediate-risk prostate cancer. This was a retrospective study evaluating 210 patients with intermediate-risk prostate cancer, treated with definitive radiotherapy at our institution between 2019-2020. NCCN risk stratification criteria were used to define intermediate-risk prostate cancer. Patients were divided into two groups: those with pretreatment prostate MRI, and those without pretreatment prostate MRI. We compared the use of external beam radiotherapy, brachytherapy alone, brachytherapy boost, and androgen depravation therapy between the two groups. Inverse probability of treatment weighting was used to match the two groups for age, comorbidity index, American Urologic Association symptoms index, pretreatment PSA, grade group, and percent core involvement on prostate biopsy. Wilcoxon Rank Sum and Chi-squared tests were used to compare continuous and categorical variables. Of the patients who met the study’s eligibility criteria, 133 had a prostate MRI and 77 did not. Following propensity matching, there were no differences between baseline characteristics between the two groups. There were no statistically significant differences in treatments pursued between the two groups: 42% vs 47% were treated with brachytherapy alone, 40% vs 42% were treated with external beam radiotherapy alone, 18% vs 12% were treated with external beam radiotherapy with a brachytherapy boost, and 24% vs 17% received androgen deprivation therapy in the non-MRI and MRI groups, respectively. This analysis suggests that pretreatment MRI does not significantly impact radiation therapy or androgen deprivation therapy decisions in patients with intermediate-risk prostate cancer. Obtaining a pretreatment prostate MRI should be used judiciously and pursued only to answer a specific question, for which the answer is likely to impact treatment decision. Further follow up is needed to correlate MRI findings with their impacts on specific oncologic outcomes.Keywords: magnetic resonance imaging, prostate cancer, definitive radiotherapy, gleason score 7
Procedia PDF Downloads 89